同理:, 查看更多

 

题目列表(包括答案和解析)

同时抛掷15枚均匀的硬币一次:

(1)试求至多有1枚正面向上的概率;

(2)试问出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率是否相等?请说明理由.

查看答案和解析>>

(理)已知椭圆的离心率为,直线ly=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;(3)设C­2与x轴交于点Q,不同的两点R、S在C2上,且 满足, 求的取值范围.

查看答案和解析>>

(理)已知点是平面直角坐标系上的一个动点,点到直线的距离等于点到点的距离的2倍.记动点的轨迹为曲线.
(1)求曲线的方程;
(2)斜率为的直线与曲线交于两个不同点,若直线不过点,设直线的斜率分别为,求的数值;
(3)试问:是否存在一个定圆,与以动点为圆心,以为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.

查看答案和解析>>

(理)已知点是平面直角坐标系上的一个动点,点到直线的距离等于点到点的距离的2倍.记动点的轨迹为曲线.
(1)求曲线的方程;
(2)斜率为的直线与曲线交于两个不同点,若直线不过点,设直线的斜率分别为,求的数值;
(3)试问:是否存在一个定圆,与以动点为圆心,以为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.

查看答案和解析>>

同学4人各写一张贺卡,先集中起来,然后每人从中任取一张贺卡;求下列条件的概率:

(1) 每人拿到的1张贺卡都是自己写的概率;

(2) 有且只有1个人拿到的贺卡是自己写的概率

【解析】本试题主要考查了古典概型的运用。解决该试题的关键是理解一次试验的所有基本事件数,然后结合事件A发生的事件数,利用比值可以得到概率值。

 

查看答案和解析>>


同步练习册答案