(Ⅰ)求保险公司在学平险种中.一年内至少支付赔偿金元的概率, 查看更多

 

题目列表(包括答案和解析)

袋中装有13个红球和n个白球,这些红球和白球除了颜色不同之外,其余都相同,若从袋中同时取两个球,取出的是2个红球的概率等于取出的是一红一白两个球的概率的3倍.
(1)试求n的值;
(2)某公司的某部门有21位职员,公司将进行抽奖活动,规定:每个职员都从袋中同时取两个球,然后放回袋中,摇匀再给别人抽奖,若某人取出的两个球是一红一白时,则中奖(奖金1000元);否则,不中奖(也发鼓励奖金100元).试求此公司在这次抽奖活动中所发奖金总额的期望值.

查看答案和解析>>

袋中装有13个红球和个白球,这些红球和白球除了颜色不同之外,其余都相同,从袋中同时取两个球.

(1)若取出的是2个红球的概率等于取出的是一红一白两个球的概率的3倍,试求的值;

(2) 某公司的某部门有21位职员,公司将进行抽奖活动,在(1)的条件下,规定:每个职员都从袋中同时取两个球,然后放回袋中,摇匀再给别人抽奖,若某人取出的两个球是一红一白时,则中奖(奖金1000元);否则,不中奖(也发鼓励奖金100元).试求此公司在这次抽奖活动中所发奖金总额的期望值.

 

查看答案和解析>>

购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1-0.999104
(Ⅰ)求一投保人在一年度内出险的概率p;
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).

查看答案和解析>>

(本小题满分12分)

购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为

(Ⅰ)求一投保人在一年度内出险的概率

(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。

查看答案和解析>>

(全国Ⅱ卷理18)购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为

(Ⅰ)求一投保人在一年度内出险的概率

(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).

查看答案和解析>>

一、学科网(Zxxk.Com)

1.C       2.A      3.D      4.C       5.A      6.B       7.A      8.C       9.D      10.C 学科网(Zxxk.Com)

11.D     12.B学科网(Zxxk.Com)

1~5略学科网(Zxxk.Com)

6.学科网(Zxxk.Com)

7.解:学科网(Zxxk.Com)

       学科网(Zxxk.Com)

       学科网(Zxxk.Com)

其展开式中含的项是:,系数等于学科网(Zxxk.Com)

8.解:根据题意:学科网(Zxxk.Com)

9.解:,椭圆离心率为学科网(Zxxk.Com)

10.解:依腰意作出图形.取中点,连接,则,不妨设四面体棱长为2,则是等腰三角形,必是锐角,就是所成的角,学科网(Zxxk.Com)

学科网(Zxxk.Com)

11.解:已知两腰所在直线斜率为1,,设底边所在直线斜率为,已知底角相等,由到角公式得:学科网(Zxxk.Com)

学科网(Zxxk.Com)

       ,解得学科网(Zxxk.Com)

       由于等腰三角底边过点(,0)则只能取学科网(Zxxk.Com)

12.解:如图,正四面体中,学科网(Zxxk.Com)

       学科网(Zxxk.Com)

中心,连,此四面体内切球与外接球具有共同球心必在上,并且等于内切球半径,等于外接球半径.记面积为,则学科网(Zxxk.Com)

,从而学科网(Zxxk.Com)

二、学科网(Zxxk.Com)

13..解:共线学科网(Zxxk.Com)

14..解:,曲线在(1,0)处的切线与直线垂直,则的倾角是学科网(Zxxk.Com)

15.曲线      ①,化作标准形式为,表示椭圆,由于对称性.取焦点,过且倾角是135°的弦所在直线方程为:,即②,联立式①与式②.消去y,得:,由弦长公式得:

16.充要条件①:底面是正三角形,顶点在底面的射影恰是底面的中心.

充要条件②:底面是正三角形.且三条侧棱长相等,

充要条件③:底面是正三角形,且三个侧面与底面所成角相等.

再如:底面是正三角形.且三条侧棱与底面所成角相等;三条侧棱长相等,且三个侧面与底面所成角相等;三个侧面与底面所成角相等,三个侧面两两所成二面角相等.

三、

17.解:,则.由正弦定理得

      

      

      

18.(1)证:已知是正三棱柱,取中点中点,连,则两两垂直,以轴建立空间直角坐标系,又已知

,则,又因相交,故

(2)解:由(1)知,是面的一个法向量.

             

,设是面的一个法向量,则①,②,取,联立式①、②解得,则

              二面角是锐二面角,记其大小为.则

             

二面角的大小,亦可用传统方法解(略).

19.解:已知各投保学生是否出险相互独立,且每个投保学生在一年内出险的概率都是,记投保的5000个学生中出险的人数为,则(5000,0.004)即服从二项分布.

(1)记“保险公司在学平险险种中一年内支付赔偿金至少5000元”为事件A,则

             

             

(2)该保险公司学平险除种总收入为元=25万元,支出成本8万元,支付赔偿金5000元=0.5万元,盈利万元.

~知,

进而万元.

故该保险公司在学平险险种上盈利的期望是7万元.

20.解(1):由,即

              ,而

由表可知,上分别是增函数,在上分别是减函数.

.   

(2)时,等价于,记

,因

上是减函数,,故

时,就是,显然成立,综上可得的取值范围是:

22.解:(1)由条件可知椭圆的方程是:

             

                ①,直线的方程是            ②,

联立式①、②消去并整理得,由此出发时,是等比数列,

(2)由(1)可知,.当时,

      

      

       是递减数列

       对恒成立

       时,是递减数列.

21.解(1):,由解得函数定义域呈

              ,由解得,列表如下:

0

0

极大

极小

              解得,进而求得中点

              己知在直线上,则

       (2)

,则,点到直线的距离

,由于直线与线段相交于,则,则

,则

其次,,同理求得的中离:

,即,由

时,

,当时,.注意到,由对称性,时仍有

 

,进而

故四边形的面积:

时,

 


同步练习册答案