(3)设数列 查看更多

 

题目列表(包括答案和解析)

设数列{an}是公差不为0的等差数列,a1=2且a1,a5,a13成等比数列,则数列{an}的前n项和Sn=(  )
A、
n2
4
+
7n
4
B、
n2
3
+
5n
3
C、
n2
2
+
3n
4
D、n2+n

查看答案和解析>>

设数列{an}满足a1+3a2+32a3+…+3n-1an=
n
3
,n∈N*
(1)求数列{an}的通项;
(2)设bn=
n
an
,求数列{bn}的前n项和Sn

查看答案和解析>>

设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=
1
2
,q=-
1
3
,求b3
(Ⅱ)若p=2,q=-1,求数列{bm}的前2m项和公式;
(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范围;如果不存在,请说明理由.

查看答案和解析>>

设数列{an}是等比数列,a1=C2m+33m•Am-21,公比q是(x+
14x2
)4
的展开式中的第二项(按x的降幂排列).
(1)用n,x表示通项an与前n项和Sn
(2)若An=Cn1S1+Cn2S2+…+CnnSn,用n,x表示An

查看答案和解析>>

设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn
(Ⅰ)证明:当b=2时,{an-n•2n-1}是等比数列;
(Ⅱ)求{an}的通项公式.

查看答案和解析>>

 

一、选择题:本大题共有8个小题,每小题5分,共40分;在每个小题给出的四个选项中有且仅有一个是符合题目要求的。

1―8 BDABADBC

二、填空题:本大题共有6个小题,每小题5分,共30分;请把答案写在相应的位置上。

9.5    10.    11.7    12.    13.    14.

三、解答题:本大题共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤。

15.(本题满分13分)

解:(1)

   (2)

   

16.(本题满分13分)

解:  用A,B,C分别表示事件甲、乙、丙面试合格.

由题意知A,B,C相互独立,且

P(A)=P(B)=P(C)=.

   (Ⅰ)至少有1人面试合格的概率是

  …………………6分

   (2)没有人签约的概率为

  ………………13分

17.(本题满分13分)

解法1:(1)连结A1B,则D1E在侧面ABB1A1上的射影是A1B,

又∵A1B⊥AB1

连结DE,

∵D1E在底面ABCD上的射影是DE,E、F均为中点,

∴DE⊥AF,

∴D1E⊥AF

∵AB1∩AF=A

∴D1E⊥平面AB1F   …………………6分

   (2)∵C1C⊥平面EFA,连结AC交EF于H,

则AH⊥EF,

连结C1H,则C1H在底面ABCD上的射影是CH,

∴C1H⊥EF,

∴∠C1HA为二在角C1―EF―A的平面角,它是∠C1HC的邻补角。

解法2:(1)以A为坐标原点,建立如图所示的空间直角坐标系。

   (2)由已知得为平面EFA的一个法向量,

∵二面角C1―EF―A的平面角为钝角,

∴二面角C1―EF―A的余弦值为   ………………13分

18.(本题满分13分)

解:(1)

   (2)当

   (3)令

     ①

     ②

①―②得   ………………13分

19.(本题满分14分)

解:(1)由题意

  ………………3分

   (2)设此最小值为

   (i)若区间[1,2]上的增函数,

   (ii)若上是增函数;

上是减函数;

①当

②当

③当

综上所述,所求函数的最小值

   ………………14分

20.(本题满分14分)

解:(1)设椭圆C的方程:

   (2)由

        ①

由①式得