C. D. 查看更多

 

题目列表(包括答案和解析)

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>

定义域为R的函数满足,且当时,,则当时,的最小值为( )

A B C D

 

查看答案和解析>>

.过点作圆的弦,其中弦长为整数的共有  (  )    

A.16条          B. 17条        C. 32条            D. 34条

 

查看答案和解析>>

 

一、选择题

1―10 ACBCB   DBCDD

二、填空题

11.    12.    13.―3     14.

15.2    16.    17.<

三、解答题:

18.解:(I)

      

   (II)由于区间的长度是为,为半个周期。

    又分别取到函数的最小值

所以函数上的值域为。……14分

19.解:(Ⅰ)证明:连接BD,设AC与BD相交于点F.

因为四边形ABCD是菱形,所以AC⊥BD.……………………2分

又因为PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.………………4分

而AC∩BD=F,所以AC⊥平面PDB.

E为PB上任意一点,DE平面PBD,所以AC⊥DE.……………………6分

   (Ⅱ)连EF.由(Ⅰ),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF.

S△ACE =AC?EF,在△ACE面积最小时,EF最小,则EF⊥PB.

S△ACE=9,×6×EF=9,解得EF=3. …………………8分

由PB⊥EF且PB⊥AC得PB⊥平面AEC,则PB⊥EC,

又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB。………10分

作GH//CE交PB于点G,则GH⊥平面PAB,

所以∠GEH就是EG与平面PAB所成角。   ………………12分

在直角三角形CEB中,BC=6,

20.解:(1)

   ………………5分

   ………………6分

   (2)若

   

   

21.解:(1)

   

  ………………6分

   (2)由(1)可知

    要使对任意   ………………14分

22.解:(1)依题意知,抛物线到焦点F的距离是

      …………4分

   (2)设圆的圆心为

   

    即当M运动时,弦长|EG|为定值4。 ………………9分

   (III)因为点C在线段FD上,所以轴不平行,

    可设直线l的方程为

   

   (1)当时,不存在这样的直线l

   (2)当   ………………16分