(I)求在[0.1]上的极值, 查看更多

 

题目列表(包括答案和解析)

已知函数

   (I)求f(x)在[0,1]上的极值;

   (II)若对任意成立,求实数a的取值范围;

   (III)若关于x的方程在[0,1]上恰有两个不同的实根,求实数b的取值范围.

 

查看答案和解析>>

已知函数

(I)求f(x)在[0,1]上的极值;

(II)若对任意成立,求实数a的取值范围;

(III)若关于x的方程在[0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

已知函数

(I)求f(x)在[0,1]上的极值;

(II)若对任意成立,求实数a的取值范围;

(III)若关于x的方程在[0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

 已知函数

(I)求函数的极值;

    (II)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),    且x1<x0<x2,使得曲线在点Q处的切线//P1P2,,则称为弦P1P2,的伴随切线。

特别地,当x0 = x1 + (1-)x2 (0<<1)时,又称为弦P1P2,-伴随切线。

(i)求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的;

(ii)是否存在曲线C,使得曲线C的任意一条弦均有-伴随切线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由。

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知函数
(I)求f(x)在[0,1]上的极值;
(II)若对任意成立,求实数a的取值范围;
(III)若关于x的方程在[0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

一、选择题:

1―5  ACBBD    6―10  BCDAC

二、填空题:

11.60    12.       13.―     14.

15.2    16.    17.

三、解答题:

18.解:(I)

20090506

   (II)由于区间的长度是为,为半个周期。

    又分别取到函数的最小值

所以函数上的值域为。……14分

19.解:(1)该同学投中于球但未通过考核,即投蓝四次,投中二次,且这两次不连续,其概率为                                 …………5分

   (2)在这次考核中,每位同学通过考核的概率为

      ………………10分

    随机变量X服从其数学期望

  …………14分

20.解:(1)设FD的中点为G,则TG//BD,而BD//CE,

    当a=5时,AF=5,BD=1,得TG=3。

    又CE=3,TG=CE。

    *四边形TGEC是平行四边形。      

*CT//EG,TC//平面DEF,………………4分

   (2)以T为原点,以射线TB,TC,TG分别为x,y,z轴,

建立空间直角坐标系,则D(1,0,1),

              ………………6分

    则平面DEF的法向量n=(x,y,z)满足:

 

    解之可得又平面ABC的法向量

m=(0,0,1)

   

   即平面DEF与平面ABC相交所成且为锐角的二面角的余弦值为  ……9分

   (3)由P在DE上,可设,……10分

    则

                   ………………11分

    若CP⊥平面DEF,则

    即

 

 

    解之得:                ……………………13分

    即当a=2时,在DE上存在点P,满足DP=3PE,使CP⊥平面DEF。…………14分

21.解:(1)因为        所以

    椭圆方程为:                          ………………4分

   (2)由(1)得F(1,0),所以。假设存在满足题意的直线l,设l的方程为

   

    代入       ………………6分

    设   ①

                  ……………………8分

    设AB的中点为M,则

   

     ……………………11分

    ,即存在这样的直线l

    当时, k不存在,即不存在这样的直线l;……………………14分

 

 

 

 

22.解:(I) ……………………2分

    令(舍去)

    单调递增;

    当单调递减。    ……………………4分

    为函数在[0,1]上的极大值。        ……………………5分

   (II)由

 ①        ………………………7分

依题意知上恒成立。

都在上单调递增,要使不等式①成立,

当且仅当…………………………11分

   (III)由

,则

上递增;

上递减;

        …………………………16分