题目列表(包括答案和解析)
已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)设
,若对任意
,
,不等式
恒成立,求实数
的取值范围.
【解析】第一问利用
的定义域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是![]()
第二问中,若对任意
不等式
恒成立,问题等价于
只需研究最值即可。
解: (I)
的定义域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是
........4分
(II)若对任意
不等式
恒成立,
问题等价于
,
.........5分
由(I)可知,在
上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以
; ............6分
![]()
当b<1时,
;
当
时,
;
当b>2时,
;
............8分
问题等价于![]()
........11分
解得b<1 或
或
即
,所以实数b的取值范围是
下列说法中
① 若定义在R上的函数
满足
,则6为函数
的周期;
② 若对于任意
,不等式
恒成立,则
;
③ 定义:“若函数
对于任意
R,都存在正常数
,使
恒成立,则称函数
为有界泛函.”由该定义可知,函数
为有界泛函;
④对于函数
设
,
,…,
(
且
),令集合
,则集合
为空集.正确的个数为
A.1个 B.2个 C.3个 D.4个
下列说法中
① 若定义在R上的函数
满足
,则6为函数
的周期;
② 若对于任意
,不等式
恒成立,则
;
③ 定义:“若函数
对于任意
R,都存在正常数
,使
恒成立,则称函数
为有界泛函.”由该定义可知,函数
为有界泛函;
④对于函数
设
,
,…,
(
且
),令集合
,则集合
为空集.正确的个数为
| A.1个 | B.2个 | C.3个 | D.4个 |
| A.1个 | B.2个 | C.3个 | D.4个 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com