题目列表(包括答案和解析)
C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:
和直线
,
(1)求圆O和直线
的直角坐标方程;(2)当
时,求直线
与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数![]()
和
,不等式
恒成立,试求实数
的取值范围.
C
[解析] 由基本不等式,得ab≤
=
=
-ab,所以ab≤
,故B错;
+
=
=
≥4,故A错;由基本不等式得
≤
=
,即
+
≤
,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×
=
,故D错.故选C.
.定义域为R的函数
满足
,且当
时,
,则当
时,
的最小值为( )
(A)
(B)
(C)
(D)![]()
.过点
作圆
的弦,其中弦长为整数的共有 ( )
A.16条 B. 17条 C. 32条 D. 34条
一、选择题(每小题5分,满分60分)
1
2
3
4
5
6
7
8
9
10
11
12
D
C
D
B
B
A
C
C
A
D
A
D
二、填空题(每小题4分,满分16分)
13.-6 14.
15.
16.②③
三、解答题(第17、18、19、20、21题各12分,第22题14分,共74分)
17.(I)

(Ⅱ)


函数
的值域为
18.解:(I)记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件
、
、
,则
,且有
即

(Ⅱ)由(1)
则甲、乙、丙三人中恰有两人回答对该题的概率为:

19.解:法一
(I)设
是
的中点,连结
,
则四边形
为方形,
,故
,

即
又
平面
(Ⅱ)由(I)知
平面
,
又
平面
,
,
取
的中点
,连结
又
,
则
,取
的中点
,连结
则
为二面角
的平面角
连结
,在
中,
,
取
的中点
,连结
,
,在
中,

二面角
的余弦值为
法二:
(I)以
为原点,
所在直线分别为
轴,
轴,
轴建立如图所示的空间直角坐标系,则


又因为
所以,
平面
(Ⅱ)设
为平面
的一个法向量。
由
得
取
,则
又
,
设
为平面
的一个法向量,由
,
,
得
取
取
设
与
的夹角为
,二面角
为
,显然
为锐角,
,即为所求
20.解:(I)
或
故
的单调递增区间是
和
单调递减区间是(0,2)
(Ⅱ)

在
和
递增,在(-1,3)递减。
有三个相异实根

21.解:(I)设
的公差为
,则:

(Ⅱ)当
时,
,由
,得
当
时,
,
,即
是以
为首项,
为公比的等比数列。
(Ⅲ)由(Ⅱ)可知:


22.解:(I)设过
与抛物线
的相切的直线的斜率是
,
则该切线的方程为:
由
得

则
都是方程
的解,故
(Ⅱ)设
由于
,故切线
的方程是:
则
,同理
则直线
的方程是
,则直线
过定点(0,2)
(Ⅲ)要使
最小,就是使得
到直线
的距离最小,而
到直线
的距离

当且仅当
即
时取等号
设
由
得
,则



湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com