(1)求a边的长度, (2)求的值 查看更多

 

题目列表(包括答案和解析)

如图,有一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距离分别是a米(0<a<12)、4米,不考虑树的粗细. 现在想用16米长的篱笆,借助墙角围成一个矩形的花圃ABCD, 并要求将这棵树围在花圃内或在花圃的边界上,设BC=x米,此矩形花圃的面积为y平方米。
(Ⅰ)写出y关于x的函数关系,并指出这个函数的定义域;
(Ⅱ)当BC为何值时,花圃面积最大?

查看答案和解析>>

设函数y=f(x)=ax+
1x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

设函数y=f(x)=ax+
1
x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

设△ABC的内角A,B,C所对的边长分别为a,b,c,已知△ABC的周长为,且
(1)求C的值;
(2)若△ABC的面积为sinC,求角C的度数.

查看答案和解析>>

设△ABC的内角A,B,C所对的边长分别为a,b,c,已知△ABC的周长为,且
(1)求C的值;
(2)若△ABC的面积为sinC,求角C的度数.

查看答案和解析>>

一、选择题1―5 BDADA  6―12 ACDCB  BB

二、填空题13.2  14.    15.  16.①③④

 三、17.解:在中  

                                                   2分

    4分

      ….6分

   (2)=……..10分

18.解:(1)在正方体中,分别为中点   即平面

   到平面的距离即到平面的距离.

    在平面中,连结

之距为, 因此到平面的距离为………6分

   (2)在四面体中,

    又底面三角形是正三角形,

    设之距为

      

    故与平面所成角的正弦值   …………12分

19.解:(Ⅰ)设两项技术指标达标的概率分别为

由题意得:          ……………………2分      

   解得:,∴.   即,一个零件经过检测为合格品的概率为………………………………..             3分                       

(Ⅱ)任意抽出5个零件进行检查,其中至多3个零件是合格品的概率为

 ……………………………….8分                               

(Ⅲ)依题意知~B(4,),           …………12分

20.解(1)

。…………………………………………………2分

…………………………………………………………….4分

为等差数列                                        6分

   (2)

 ………………10分

21.解:(1)

                     2分

x

(-,-3)

-3

(-3,1)

1

(1,+

+

0

-

0

+

(x)

极大值

极小值

                     6分

   (2)

 

                                     9分

3恒成立

3恒成立

恒成立…………………………..10分

                                    12分

22.解法一:(Ⅰ)设点,则,由得:

,化简得.……………….3分

(Ⅱ)(1)设直线的方程为:

,又

联立方程组,消去得:

……………………………………6分

得:

,整理得:

.……………………………………………………………9分

解法二:(Ⅰ)由得:

所以点的轨迹是抛物线,由题意,轨迹的方程为:

(Ⅱ)(1)由已知,得

则:.…………①

过点分别作准线的垂线,垂足分别为

则有:.…………②

所以点的轨迹是抛物线,由题意,轨迹的方程为:

(Ⅱ)(1)由已知,得

则:.…………①

过点分别作准线的垂线,垂足分别为

则有:.…………②

由①②得:,即

(Ⅱ)(2)解:由解法一,

当且仅当,即时等号成立,所以最小值为.…………..12分


同步练习册答案