已知数列满足递推式:且. 查看更多

 

题目列表(包括答案和解析)

(l3分)已知数列满足递推关系式:,且

(1)求的取值范围;

(2)用数学归纳法证明:

    (3)若,求证:

查看答案和解析>>

已知数列an满足递推关系式:2an+1=1-an2(n≥1,n∈N),且0<a1<1.
(1)求a3的取值范围;
(2)用数学归纳法证明:|an-(
2
-1)|<
1
2n
(n≥3,n∈N);
(3)若bn=
1
an
,求证:|bn-(
2
+1)|<
12
2n
(n≥3,n∈N).

查看答案和解析>>

已知数列an满足递推关系式:2an+1=1-an2(n≥1,n∈N),且0<a1<1.
(1)求a3的取值范围;
(2)用数学归纳法证明:数学公式(n≥3,n∈N);
(3)若数学公式,求证:数学公式(n≥3,n∈N).

查看答案和解析>>

已知数列{an}满足递推关系式:an+2an-an+12=tn(t-1),(n∈N*),且a1=1,a2=t.(t为常数,且t>1)
(1)求a3
(2)求证:{an}满足关系式an+2-2tan+1+tan=0,(n∈N*
(3)求证:an+1>an≥1(n∈N*).

查看答案和解析>>

已知数列{an}满足递推关系式:an+2an-an+12=tn(t-1),(n∈N*),且a1=1,a2=t.(t为常数,且t>1)
(1)求a3
(2)求证:{an}满足关系式an+2-2tan+1+tan=0,(n∈N*
(3)求证:an+1>an≥1(n∈N*).

查看答案和解析>>

一、选择题:1―5 BDACB  6―12ABACA CB

二、填空题13.2   14.  15.16.①⑧⑤ 或①③⑧ 或④⑧①或④①⑧

17.(1)解:在中  

                                                 2分

    4分

      …….6分

   (2)                            10分

18.解:(1)在正方体中,

分别为中点

  即平面

 到平面的距离即到平面的距离.               3分

    在平面中,连结

之距为                    

因此到平面的距离为……………6分

   (2)在四面体中,

    又底面三角形是正三角形,

    设之距为

      故与平面所成角的正  …………12分

另解向量法

19.解:(Ⅰ)设两项技术指标达标的概率分别为

由题意得:                  …………..…………..4分

  解得:,∴.   即,一个零件经过检测为合格品的概率为. ………. ……………………………….8分                     

(Ⅱ)任意抽出5个零件进行检查,其中至多3个零件是合格品的概率为

 ………………..12分                               

20.解:(1)

   ………………4分

   (2)由

        …………8分

   (3)   

21.解:(1)

                  2分

-1

(x)

-

0

+

0

-

(x)

极小值0

极大值

                                      6分

   (2)

      

                    8分

………….12分

22.解法一:(Ⅰ)设点,则,由得:

,化简得.……………….3分

(Ⅱ)(1)设直线的方程为:

,又

联立方程组,消去得:

……………………………………6分

得:

,整理得:

.……………………………………………………………9分

解法二:(Ⅰ)由得:

所以点的轨迹是抛物线,由题意,轨迹的方程为:

(Ⅱ)(1)由已知,得

则:.…………①

过点分别作准线的垂线,垂足分别为

则有:.…………②

所以点的轨迹是抛物线,由题意,轨迹的方程为:

(Ⅱ)(1)由已知,得

则:.…………①

过点分别作准线的垂线,垂足分别为

则有:.…………②

由①②得:,即

(Ⅱ)(2)解:由解法一,

当且仅当,即时等号成立,所以最小值为.…………..12分


同步练习册答案