第II卷 查看更多

 

题目列表(包括答案和解析)

某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:
数学成绩分组 [0,30) [30,60) [60,90) [90,120) [120,150]
人数 60 90 300 x 160
(I)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率;
(II)已知本次数学成绩的优秀线为110分,试根据所提供数据估计该中学达到优秀线的人数;
(III)作出频率分布直方图,并估计该学校本次考试的数学平均分.(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:
数学成绩分组[0,30)[30,60)[60,90)[90,120)[120,150]
人数6090300x160
(I)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率;
(II)已知本次数学成绩的优秀线为110分,试根据所提供数据估计该中学达到优秀线的人数;
(III)作出频率分布直方图,并估计该学校本次考试的数学平均分.(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:
数学成绩分组[0,30)[30,60)[60,90)[90,120)[120,150]
人数6090300x160
(I)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率;
(II)已知本次数学成绩的优秀线为110分,试根据所提供数据估计该中学达到优秀线的人数;
(III)作出频率分布直方图,并估计该学校本次考试的数学平均分.(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

(本小题满分12分)

某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:

数学成绩分组

人数

60

90

300

x

160

   (I)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽

样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,

求他被抽中的概率;

   (II)已知本次数学成绩的优秀线为110分,试根据所提供数据估计该中学达到优秀线的人数;

   (III)作出频率分布直方图,并估计该学校本次考试的数学平均分。

 

 

查看答案和解析>>

(本小题满分12分)

某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:

数学成绩分组

人数

60

90

300

x

160

   (I)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽

样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,

求他被抽中的概率;

   (II)已知本次数学成绩的优秀线为110分,试根据所提供数据估计该中学达到优秀线的人数;

   (III)作出频率分布直方图,并估计该学校本次考试的数学平均分。(同一组中的数据用该组区间的中点值作代表)

 

 

查看答案和解析>>

 

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

C

C

A

C

D

D

C

B

A

B

 

二、填空题

11. ;        12. (或);       13.  15;          14. 6;      

15.              16. ;                     17.

三、解答题

                                 …………12′

  故函数的取值范围是…………12′      

 

19. 解:(1)设袋中原有n个白球,由题意知:,所以=12,

解得n=4(舍去),即袋中原有4个白球;                          …………4′

(2)由题意,的可能取值为1,2,3,4

所以,取球次数的分布列为:

1

2

3

4

P

                                                             …………9′  

(Ⅲ)因为甲先取,所以甲只有可能在第1次和第3次取球,记“甲取到白球”的事件为A,

或 “=3”),所以  …………14′ 

20. 解:⑴由条件得:  ∴     ∵为等比数列∴                                 …………4′

 ⑵由   得           

     又   ∴                                 …………9′  ⑶∵

(或由),∴为递增数列.                            

从而      

                                         …………14′

21.解:(1)依题意有,由显然,得,化简得;                                                    …………5′

(2)证明:(?)

                                            …………10′

(?)设点A、B的坐标分别为,不妨设点A在点P与点B之间,点,依(?)有*,又可设过点P(2,4)的直线方程为,得

,代入上*式得

,又,得

 ,当直线AB的斜率不存在时,也满足上式.即点Q总过直线,得证.                                                               …………15′

22. 解:(Ⅰ)设在公共点处的切线相同.,由题意.即得:,或(舍去).即有.                              …………4′

,则.于是当,即时,

,即时,.故为增函数,在为减函数,于是的最大值为.                    …………8′

(Ⅱ)设

.故为减函数,在为增函数,于是函数上的最小值是.故当时,有,即当时,.       …………15′

 

 


同步练习册答案