(2)求数列的通项公式, 查看更多

 

题目列表(包括答案和解析)





⑴求数列的通项公式;
⑵设,若恒成立,求实数的取值范围;
⑶是否存在以为首项,公比为的数列,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由

查看答案和解析>>

数列的通项公式

(1)求:f(1)、f(2)、f(3)、f(4)的值;

(2)由上述结果推测出计算f(n)的公式,并用数学归纳法加以证明.

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。  (1)若,求b3;   (2)若,求数列的前2m项和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。

   (1)若,求b3

   (2)若,求数列的前2m项和公式;

   (3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。 (1)若,求b3;  (2)若,求数列的前2m项和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

 

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

C

C

A

C

D

D

C

B

A

B

 

二、填空题

11. ;        12. (或);       13.  15;          14. 6;      

15.              16. ;                     17.

三、解答题

                                 …………12′

  故函数的取值范围是…………12′      

 

19. 解:(1)设袋中原有n个白球,由题意知:,所以=12,

解得n=4(舍去),即袋中原有4个白球;                          …………4′

(2)由题意,的可能取值为1,2,3,4

所以,取球次数的分布列为:

1

2

3

4

P

                                                             …………9′  

(Ⅲ)因为甲先取,所以甲只有可能在第1次和第3次取球,记“甲取到白球”的事件为A,

或 “=3”),所以  …………14′ 

20. 解:⑴由条件得:  ∴     ∵为等比数列∴                                 …………4′

 ⑵由   得           

     又   ∴                                 …………9′  ⑶∵

(或由),∴为递增数列.                            

从而      

                                         …………14′

21.解:(1)依题意有,由显然,得,化简得;                                                    …………5′

(2)证明:(?)

                                            …………10′

(?)设点A、B的坐标分别为,不妨设点A在点P与点B之间,点,依(?)有*,又可设过点P(2,4)的直线方程为,得

,代入上*式得

,又,得

 ,当直线AB的斜率不存在时,也满足上式.即点Q总过直线,得证.                                                               …………15′

22. 解:(Ⅰ)设在公共点处的切线相同.,由题意.即得:,或(舍去).即有.                              …………4′

,则.于是当,即时,

,即时,.故为增函数,在为减函数,于是的最大值为.                    …………8′

(Ⅱ)设

.故为减函数,在为增函数,于是函数上的最小值是.故当时,有,即当时,.       …………15′

 

 


同步练习册答案