即抛物线方程为 查看更多

 

题目列表(包括答案和解析)

直线l经过抛物线=4x的焦点,且与准线成角,则直线l的方程是________.(注:填上你认为正确的一个方程即可,不必考虑所有可能的情况)

查看答案和解析>>

已知点),过点作抛物线的切线,切点分别为(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;

(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,

求圆面积的最小值.

【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。

中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。

(3)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值

(Ⅰ)由可得,.  ------1分

∵直线与曲线相切,且过点,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,则的斜率

∴直线的方程为:,又

,即. -----------------7分

∵点到直线的距离即为圆的半径,即,--------------8分

故圆的面积为. --------------------9分

(Ⅲ)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,    ………10分

当且仅当,即时取等号.

故圆面积的最小值

 

查看答案和解析>>

已知过点的动直线与抛物线相交于两点.当直线的斜率是时,

(1)求抛物线的方程;

(2)设线段的中垂线在轴上的截距为,求的取值范围.

【解析】(1)B,C,当直线的斜率是时,

的方程为,即                                (1’)

联立  得         (3’)

由已知  ,                    (4’)

由韦达定理可得G方程为            (5’)

(2)设,BC中点坐标为               (6’)

 由       (8’)

    

BC中垂线为             (10’)

                  (11’)

 

查看答案和解析>>

(08年杨浦区测试)设抛物线的焦点为,经过点的直线交抛物线于两点,且两点坐标分别为是抛物线的准线上的一点,是坐标原点.若直线的斜率分别记为:,(如图)

   (1)若,求抛物线的方程.

   (2)当时,求的值.

   (3)如果取 时,

(文科考生做)判定的值大小关系.并说明理由.

   (理科考生做)判定的值大小关系.并说明理由.

通过你对以上问题的研究,请概括出在怎样的更一般的条件下,使得你研究的结果(即的值大小关系)不变,并证明你的结论.

 

 

查看答案和解析>>

精英家教网在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).则△AOB得重心G(即三角形三条中线的交点)的轨迹方程为
 

查看答案和解析>>


同步练习册答案