(2) 求与的值,(3) 求证:OM⊥ON 查看更多

 

题目列表(包括答案和解析)

已知椭圆的左焦点为F(-,0),离心率e=,M、N是椭圆上的动点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为-,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.
(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.

查看答案和解析>>

已知椭圆的左焦点为F(-,0),离心率e=,M、N是椭圆上的动点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为-,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.
(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.

查看答案和解析>>

已知椭圆
x2
a2
+
y2
b2
=1(a>b>o)
的左焦点为F(-
2
,0),离心率e=
2
2
,M、N是椭圆上的动点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:
OP
=
OM
+2
ON
,直线OM与ON的斜率之积为-
1
2
,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.
(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.

查看答案和解析>>

(2013•中山模拟)已知椭圆
x2
a2
+
y2
b2
=1(a>b>o)
的左焦点为F(-
2
,0),离心率e=
2
2
,M、N是椭圆上的动点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:
OP
=
OM
+2
ON
,直线OM与ON的斜率之积为-
1
2
,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.
(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.

查看答案和解析>>

设a、b是不共线的两个非零向量,
(1)若
OA
=2a-b,
OB
=3a+b,
OC
=a-3b,求证:A、B、C三点共线.
(2)若8a+kb与ka+2b共线,求实数k的值;
(3)设
OM
=ma,
ON
=nb,
OP
=α a+β b,其中m、n、α、β均为实数,m≠0,n≠0,若M、P、N三点共线,
求证:
α
m
+
β
n
=1.

查看答案和解析>>


同步练习册答案