(2)若为=图象上的任意一点.直线与=的图象切于点.求直线的斜率的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知函数(x∈R)的图象为曲线C.
(1)求过曲线C上任意一点的切线斜率的取值范围;
(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围;
(3)证明:不存在与曲线C同时切于两个不同点的直线.

查看答案和解析>>

已知函数(x∈R)的图象为曲线C.
(1)求过曲线C上任意一点的切线斜率的取值范围;
(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围;
(3)证明:不存在与曲线C同时切于两个不同点的直线.

查看答案和解析>>

已知函数(x∈R)的图象为曲线C.
(1)求过曲线C上任意一点的切线斜率的取值范围;
(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围;
(3)证明:不存在与曲线C同时切于两个不同点的直线.

查看答案和解析>>

如图,椭圆C :的左右顶点为A1,A2,左右焦点为F1,F2,其中F1,F2是A1A2的三等分点,A是椭圆上任意一点,且|AF1|+|AF2|=6
(1)求椭圆C的方程;
(2)设直线AF1与椭圆交于另一点B,与y轴交于一点C,记,若点A在第一象限,求m+n的取值范围;

查看答案和解析>>

已知点A(2,0),点M为曲线上任意一点,点P为AM的中点;点P的轨迹为C;
(1)求动点P的轨迹C的方程F(x,y)=0;
(2)将轨迹C的方程变形为函数y=f(x);请写出此函数的定义域、值域、单调区间、奇偶性、最值等(不证明),并画出大致图象.
(3)若直线与轨迹C有两个不同的公共点B,K,且点G的坐标为,求|BG|+|KG|的值.

查看答案和解析>>

一、选择题:本大题共10个小题,每小题5分,共50分.

题号

1

2

3

4

5

6

7

8

9

10

答案

C

B

C

D

C

B

A

D

B

A

二、填空题:本大题共4个小题,每小题4分,共16分.

11.  630       12.  2k   13.             14.     

三、解答题:本大题共6个小题,每小题14分,共84分.

15.(4分)     

由题意得  

16. 有分布列:

0

1

2

3

P

从而期望

17.(1)

       又

        

   (2)

      

      

   (3)DE//AB,

   (4)设BB1的中点为F,连接EF、DF,则EF是DF在平面BB1C1C上的射影。

     因为BB1C1C是正方形,

   

18.(1) 由题意得  

(2)

所以直线的斜率为

,则直线的斜率                                       

19.(1)由韦达定理得

是首项为4,公差为2的等差数列。

(2)由(1)知,则

原式左边=

==右式。故原式成立。

 

20.令x=y=0,有,令y=-x则

故(1)得证。

 (2)在R上任取x1,x2,且

 

所以在R上单调递增;

 (3)

;因为

所以无解,即圆心到直线的距离大于或等于半径2,只需

 

 


同步练习册答案