题目列表(包括答案和解析)
(本小题满分12分)已知函数![]()
(I)若函数
在区间
上存在极值,求实数a的取值范围;
(II)当
时,不等式
恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1)
,其定义域为
,则
令
,
则
,
当
时,
;当
时,![]()
在(0,1)上单调递增,在
上单调递减,
即当
时,函数
取得极大值. (3分)
函数
在区间
上存在极值,
,解得
(4分)
(2)不等式
,即![]()
令![]()
(6分)
令
,则
,
,即
在
上单调递增, (7分)
,从而
,故
在
上单调递增, (7分)
(8分)
(3)由(2)知,当
时,
恒成立,即
,
令
,则
, (9分)
![]()
(10分)
以上各式相加得,
![]()
即
,
即
(12分)
。
(1)求f(x)的单调区间;
(2)讨论f(x)的极值.
所以f(-1)=2是极大值,f(1)=-2是极小值.
(2)曲线方程为y=x3-3x,点A(0,16)不在曲线上.
设切点为M(x0,y0),则点M的坐标满足y0=x03-3x0.
因f′(x0)=3(x02-1),故切线的方程为y-y0=3(x02-1)(x-x0).
注意到点A(0,16)在切线上,有16-(x03-3x0)=3(x02-1)(0-x0),
化简得x03=-8,解得x0=-2.
所以切点为M(-2,-2),
切线方程为9x-y+16=0.
| 6 |
| A、A=30°,B=45° | ||
B、c=1,cosC=
| ||
| C、B=60°,c=3 | ||
| D、C=75°,A=45° |
1+
|
1+
|
| 1+x |
1+
| ||
| 2 |
| 1 | ||
2+
|
| 2 |
| 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com