题目列表(包括答案和解析)
已知函数
在
取得极值
(1)求
的单调区间(用
表示);
(2)设
,
,若存在
,使得
成立,求
的取值范围.
【解析】第一问利用![]()
![]()
根据题意
在
取得极值, ![]()
对参数a分情况讨论,可知
当
即
时递增区间:
递减区间:
,
![]()
当
即
时递增区间:
递减区间:
,
![]()
第二问中,
由(1)知:
在
,
![]()
,![]()
在
![]()
![]()
从而求解。
解: ![]()
…..3分
在
取得极值,
……………………..4分
(1) 当
即
时 递增区间:
递减区间:
,
![]()
当
即
时递增区间:
递减区间:
,
………….6分
(2)
由(1)知:
在
,
![]()
,![]()
在
![]()
……………….10分
, 使
成立
![]()
![]()
![]()
得: ![]()
设
是虚数,
是实数,且![]()
(1) 求
的实部的取值范围
(2)设
,那么
是否是纯虚数?并说明理由。
【解析】本试题主要考查了复数的概念和复数的运算。利用![]()
所以
,
,![]()
![]()
第二问中,![]()
由(1)知:
,
,
为纯虚数
解:设![]()
(1)![]()
,![]()
………………………..7分
(2) ![]()
由(1)知:
,
,
为纯虚数
已知函数![]()
(1) 若函数
在
上单调,求
的值;
(2)若函数
在区间
上的最大值是
,求
的取值范围.
【解析】第一问,![]()
![]()
,
、
第二问中,![]()
由(1)知: 当
时,
上单调递增
满足条件当
时, ![]()
![]()
![]()
![]()
解: (1) ![]()
……3分
,
…………….7分
(2) ![]()
由(1)知: 当
时,
上单调递增
满足条件…………..10分
当
时,
且
![]()
…………13分
综上所述: ![]()
(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值.
(2)由(1)你发现了什么结论?并加以证明.
(2)由(1)可知:过抛物线的焦点F的动直线l交抛物线于A,B两点,存在定点P,使得
·
为定值.请写出关于椭圆的类似结论,并给出证明.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com