知, ③ 查看更多

 

题目列表(包括答案和解析)

已知函数取得极值

(1)求的单调区间(用表示);

(2)设,若存在,使得成立,求的取值范围.

【解析】第一问利用

根据题意取得极值,

对参数a分情况讨论,可知

时递增区间:    递减区间: ,

时递增区间:    递减区间: ,

第二问中, 由(1)知:

 

从而求解。

解:

…..3分

取得极值, ……………………..4分

(1) 当时  递增区间:    递减区间: ,

时递增区间:    递减区间: , ………….6分

 (2)  由(1)知:

 

……………….10分

, 使成立

    得:

 

查看答案和解析>>

是虚数,是实数,且

(1) 求的实部的取值范围

(2)设,那么是否是纯虚数?并说明理由。

【解析】本试题主要考查了复数的概念和复数的运算。利用

所以 

第二问中,

由(1)知: , , 为纯虚数

解:设

(1)

 

  ………………………..7分

(2)

由(1)知: , , 为纯虚数

 

查看答案和解析>>

已知函数

 (1) 若函数上单调,求的值;

(2)若函数在区间上的最大值是,求的取值范围.

【解析】第一问,

,

第二问中,

由(1)知: 当时, 上单调递增  满足条件当时,

解: (1) ……3分

, …………….7分

(2)

由(1)知: 当时, 上单调递增

  满足条件…………..10分

时,  

…………13分

综上所述:

 

查看答案和解析>>

已知函数f(x)=x2+1,x∈R.

(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值.

(2)由(1)你发现了什么结论?并加以证明.

查看答案和解析>>

(1)已知抛物线y2=2Px(P>0),过焦点F的动直线l交抛物线于A,B两点,O为坐标原点,求证:·为定值;

(2)由(1)可知:过抛物线的焦点F的动直线l交抛物线于A,B两点,存在定点P,使得·为定值.请写出关于椭圆的类似结论,并给出证明.

查看答案和解析>>


同步练习册答案