⑤式即为 ⑦依题意, ⑦式对都成立, 查看更多

 

题目列表(包括答案和解析)

已知数列的前项和为且满足

()求数列的通项公式;

()的前n项和为求使得都成立的所有正整数k的值.

 

查看答案和解析>>

已知是公差为d的等差数列,是公比为q的等比数列

(Ⅰ)若 ,是否存在,有?请说明理由;

(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解析】第一问中,由,整理后,可得为整数不存在,使等式成立。

(2)中当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)中设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

结合二项式定理得到结论。

解(1)由,整理后,可得为整数不存在,使等式成立。

(2)当时,则,其中是大于等于的整数反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。为奇数时,命题都成立

 

查看答案和解析>>

已知为数列的前项和,;数列满足:,其前项和为(1) 求数列的通项公式;(2) 若数列,设为数列的前项和,求使不等式都成立的最大正整数的值.

查看答案和解析>>

关于的不等式都成立,则实数的取值范围为(     )

A.        B.      C.      D.

 

查看答案和解析>>

.(本小题满分14分)
已知数列的相邻两项是关于的方程 的两实根,且,记数列的前项和为.
(1)求
(2)求证:数列是等比数列;
(3),问是否存在常数,使得都成立,若存在,
求出的取值范围,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案