题目列表(包括答案和解析)
已知在数列{an}中,
(t>0且t≠1).
是函数
的一个极值点.
(1)证明数列
是等比数列,并求数列
的通项公式;
(2)记
,当t=2时,数列
的前n项和为Sn,求使Sn>2012的n的最小值;
(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有
成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.
(本小题满分14分)已知数列{an}中,
(t>0且t≠1).若
是函数
的一个极值点.
(Ⅰ)证明数列
是等比数列,并求数列
的通项公式;
(Ⅱ)记
,当t=2时,数列
的前n项和为Sn,求使Sn>2008的n的最小值;
(Ⅲ)当t=2时,求证:对于任意的正整数n,有
。
![]()
附加题(20分):已知函数![]()
,记![]()
并且
。中学学科网
1) 写出
的表达式。
中学学科网
2) 若数列
的前n项和为![]()
,求证:![]()
3) 求证:
中学学科网
(本题满分16分)
已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),记
(n≥3).
(1)求证数列{bn}为等差数列,并求其通项公式;
(2)设
,数列{
}的前n项和为Sn,求证:n<Sn<n+1.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com