题目列表(包括答案和解析)
已知
是公差为d的等差数列,
是公比为q的等比数列
(Ⅰ)若
,是否存在
,有
?请说明理由;
(Ⅱ)若
(a、q为常数,且aq
0)对任意m存在k,有
,试求a、q满足的充要条件;
(Ⅲ)若
试确定所有的p,使数列
中存在某个连续p项的和式数列中
的一项,请证明.
【解析】第一问中,由
得
,整理后,可得![]()
、
,
为整数
不存在
、
,使等式成立。
(2)中当
时,则![]()
即
,其中
是大于等于
的整数
反之当
时,其中
是大于等于
的整数,则
,
显然
,其中![]()
![]()
、
满足的充要条件是
,其中
是大于等于
的整数
(3)中设
当
为偶数时,
式左边为偶数,右边为奇数,
当
为偶数时,
式不成立。由
式得
,整理![]()
当
时,符合题意。当
,
为奇数时,![]()
结合二项式定理得到结论。
解(1)由
得
,整理后,可得![]()
、
,
为整数
不存在
、
,使等式成立。
(2)当
时,则![]()
即
,其中
是大于等于
的整数反之当
时,其中
是大于等于
的整数,则
,
显然
,其中![]()
![]()
、
满足的充要条件是
,其中
是大于等于
的整数
(3)设
当
为偶数时,
式左边为偶数,右边为奇数,
当
为偶数时,
式不成立。由
式得
,整理![]()
当
时,符合题意。当
,
为奇数时,![]()
![]()
由
,得
![]()
当
为奇数时,此时,一定有
和
使上式一定成立。
当
为奇数时,命题都成立
已知
,(其中
)
⑴求
及
;
⑵试比较
与
的大小,并说明理由.
【解析】第一问中取
,则
;
…………1分
对等式两边求导,得![]()
取
,则
得到结论
第二问中,要比较
与
的大小,即比较:
与
的大小,归纳猜想可得结论当
时,
;
当
时,
;
当
时,
;
猜想:当
时,
运用数学归纳法证明即可。
解:⑴取
,则
;
…………1分
对等式两边求导,得
,
取
,则
。 …………4分
⑵要比较
与
的大小,即比较:
与
的大小,
当
时,
;
当
时,
;
当
时,
;
…………6分
猜想:当
时,
,下面用数学归纳法证明:
由上述过程可知,
时结论成立,
假设当
时结论成立,即
,
当
时,![]()
而![]()
∴![]()
即
时结论也成立,
∴当
时,
成立。
…………11分
综上得,当
时,
;
当
时,
;
当
时,
数列
,满足![]()
(1)求
,并猜想通项公式
。
(2)用数学归纳法证明(1)中的猜想。
【解析】本试题主要考查了数列的通项公式求解,并用数学归纳法加以证明。第一问利用递推关系式得到
,
,
,
,并猜想通项公式![]()
第二问中,用数学归纳法证明(1)中的猜想。
①对n=1,
等式成立。
②假设n=k
时,
成立,
那么当n=k+1时,![]()
,所以当n=k+1时结论成立可证。
数列
,满足![]()
(1)
,
,
,
并猜想通项公
。 …4分
(2)用数学归纳法证明(1)中的猜想。①对n=1,
等式成立。 …5分
②假设n=k
时,
成立,
那么当n=k+1时,![]()
,
……9分
所以![]()
![]()
所以当n=k+1时结论成立 ……11分
由①②知,猜想对一切自然数n
均成立
已知点
为圆
上的动点,且
不在
轴上,
轴,垂足为
,线段
中点
的轨迹为曲线
,过定点![]()
任作一条与
轴不垂直的直线
,它与曲线
交于
、
两点。
(I)求曲线
的方程;
(II)试证明:在
轴上存在定点
,使得
总能被
轴平分
【解析】第一问中设
为曲线
上的任意一点,则点
在圆
上,
∴
,曲线
的方程为![]()
第二问中,设点
的坐标为
,直线
的方程为
, ………………3分
代入曲线
的方程
,可得 ![]()
∵
,∴![]()
确定结论直线
与曲线
总有两个公共点.
然后设点
,
的坐标分别
,
,则
,
要使
被
轴平分,只要
得到。
(1)设
为曲线
上的任意一点,则点
在圆
上,
∴
,曲线
的方程为
. ………………2分
(2)设点
的坐标为
,直线
的方程为
, ………………3分
代入曲线
的方程
,可得
,……5分
∵
,∴
,
∴直线
与曲线
总有两个公共点.(也可根据点M在椭圆
的内部得到此结论)
………………6分
设点
,
的坐标分别
,
,则
,
要使
被
轴平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
当
时,(*)对任意的s都成立,从而
总能被
轴平分.
所以在x轴上存在定点
,使得
总能被
轴平分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com