题目列表(包括答案和解析)
在节能减排、保护地球环境的呼吁下,世界各国都很重视企业废水废气的排放处理。尽管企业对废水废气作了处理,但仍会对环境造成一些危害,所以企业在排出废水废气时要向当地居民支付一定的环境补偿费。已知某企业支付的环境补偿费P与该企业的废水排放量x满足关系式P=kx3(k∈[1,10]),具体k值由当地环保部门确定。而该企业的毛利润Q满足关系式
,
(1)当k=1时,该企业为达到纯利润(Q-P)最大,废水排放量会达到多少?
(2)当x>1时,就会对居民健康构成危害。该地环保部门应在什么范围内设定k值,才能使该企业在达到最大利润时,废水排放量不会对当地居民健康构成危害?
(13分)在节能减排、保护地球环境的呼吁下,世界各国都很重视企业废水废气的排放处理。尽管企业对废水废气作了处理,但仍会对环境造成一些危害,所以企业在排出废水废气时要向当地居民支付一定的环境补偿费。已知某企业支付的环境补偿费P与该企业的废水排放量x满足关系式P=kx3(k∈[1,10]),具体k值由当地环保部门确定。而该企业的毛利润Q满足关系式
,
(1)当k=1时,该企业为达到纯利润(Q-P)最大,废水排放量会达到多少?
(2)当x>1时,就会对居民健康构成危害。该地环保部门应在什么范围内设定k值,才能使该企业在达到最大利润时,废水排放量不会对当地居民健康构成危害?
(13分)在节能减排、保护地球环境的呼吁下,世界各国都很重视企业废水废气的排放处理。尽管企业对废水废气作了处理,但仍会对环境造成一些危害,所以企业在排出废水废气时要向当地居民支付一定的环境补偿费。已知某企业支付的环境补偿费P与该企业的废水排放量x满足关系式P=kx3(k∈[1,10]),具体k值由当地环保部门确定。而该企业的毛利润Q满足关系式
,
(1)当k=1时,该企业为达到纯利润(Q-P)最大,废水排放量会达到多少?
(2)当x>1时,就会对居民健康构成危害。该地环保部门应在什么范围内设定k值,才能使该企业在达到最大利润时,废水排放量不会对当地居民健康构成危害?
对于不等式
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
<1+1,不等式成立.
(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即
<k+1,则当n=k+1时,
=
<
=
=(k+1)+1,
所以当n=k+1时,不等式成立,则上述证法 ( ).
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
在△ABC中,角A、B、C的对边分别为a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),满足
=![]()
(Ⅰ)求角B的大小;
(Ⅱ)设
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.
【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用
第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即
,又由余弦定理
=2acosB,所以cosB=
,B=![]()
第二问中,m=(sin(C+
),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+
-
=-
+2ksinA+
=-
+
(k>1).
而0<A<
,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-
=3,得k=
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com