题目列表(包括答案和解析)
(09年长沙一中第八次月考理)(本小题满分12分)我校文化体育艺术节的乒乓球决赛在甲乙两人中进行,比赛规则如下:比赛采用7局4胜制(先胜4局这获胜即比赛结束),在每一局比赛中,先得11分的一方为胜方;比赛没有平局,10平后,先连得2分的一方为胜方![]()
(1)根据以往战况,每局比赛甲胜乙的概率为0.6,设比赛的场数为
,求
的分布列和期望;
我校文化体育艺术节的乒乓球决赛在甲乙两人中进行,比赛规则如下:比赛采用7局4胜制(先胜4局这获胜即比赛结束),在每一局比赛中,先得11分的一方为胜方;比赛没有平局,10平后,先连得2分的一方为胜方。(1)根据以往战况,每局比赛甲胜乙的概率为0.6,设比赛的场数为
,求
的分布列和期望;(2)若双方在每一分的争夺中甲胜的概率也为0.6,求决胜局中甲在以8:9落后的情况下最终以12:10获胜的概率。
已知函数
.
(1)求
在区间
上的最大值;
(2)若函数
在区间
上存在递减区间,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用,求解函数的最值。第一问中,利用导数求解函数的最值,首先求解导数
,然后利用极值和端点值比较大小,得到结论。第二问中,我们利用函数在
上存在递减区间,即
在
上有解,即
,即可,可得到。
解:(1)
,
令
,解得
……………3分
![]()
,
在
上为增函数,在
上为减函数,
.
…………6分
(2)![]()
在
上存在递减区间,
在
上有解,……9分
![]()
在
上有解,
![]()
,
所以,实数
的取值范围为
求圆心
在直线
上,且经过原点及点
的圆
的标准方程.
【解析】本试题主要考查的圆的方程的求解,利用圆心和半径表示圆,首先设圆心C的坐标为(
),然后利用
,得到
,从而圆心
,半径
.可得原点 标准方程。
解:设圆心C的坐标为(
),...........2分
则
,即
,解得
........4分
所以圆心
,半径
...........8分
故圆C的标准方程为:
.......10分
![]()
已知中心在坐标原点,焦点在
轴上的椭圆C;其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点
(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。
第一问中,可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求椭圆C的标准方程为![]()
第二问中,
假设存在这样的直线
,设
,MN的中点为![]()
因为|ME|=|NE|所以MN
EF所以![]()
(i)其中若
时,则K=0,显然直线
符合题意;
(ii)下面仅考虑
情形:
由
,得,![]()
,得![]()
代入1,2式中得到范围。
(Ⅰ) 可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求椭圆C的标准方程为![]()
(Ⅱ) 假设存在这样的直线
,设
,MN的中点为![]()
因为|ME|=|NE|所以MN
EF所以![]()
(i)其中若
时,则K=0,显然直线
符合题意;
(ii)下面仅考虑
情形:
由
,得,![]()
,得
……② ……………………9分
则
.
代入①式得,解得
………………………………………12分
代入②式得
,得
.
综上(i)(ii)可知,存在这样的直线
,其斜率k的取值范围是![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com