解:(Ⅰ)由题意.得 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=sin(ωx+φ) (0<φ<π,ω>0)过点,函数y=f(x)图象的两相邻对称轴间的距离为.

(1) 求f(x)的解析式;

(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.

【解析】本试题主要考查了三角函数的图像和性质的运用,第一问中利用函数y=f(x)图象的两相邻对称轴间的距离为.得,所以

第二问中,

   可以得到单调区间。

解:(Ⅰ)由题意得,,…………………1分

代入点,得…………1分

    ∴

(Ⅱ)   的单调递减区间为.

 

查看答案和解析>>

如图,已知圆锥体的侧面积为,底面半径互相垂直,且是母线的中点.

(1)求圆锥体的体积;

(2)异面直线所成角的大小(结果用反三角函数表示).

【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。

第一问中,由题意,,故

从而体积.2中取OB中点H,联结PH,AH.

由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得

中,,PH=1/2SB=2,

,所以异面直线SO与P成角的大arctan

解:(1)由题意,

从而体积.

(2)如图2,取OB中点H,联结PH,AH.

由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得

中,,PH=1/2SB=2,

,所以异面直线SO与P成角的大arctan

 

查看答案和解析>>

△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。

【解析】本试题主要考查了余弦定理的运用。利用由题意得,

并且得到结论。

解:(Ⅰ)由题意得,………1分…………1分

(Ⅱ)………………1分

   

 

查看答案和解析>>

若函数在定义域内存在区间,满足上的值域为,则称这样的函数为“优美函数”.

(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;

(Ⅱ)若函数为“优美函数”,求实数的取值范围.

【解析】第一问中,利用定义,判定由题意得,由,所以

第二问中, 由题意得方程有两实根

所以关于m的方程有两实根,

即函数与函数的图像在上有两个不同交点,从而得到t的范围。

解(I)由题意得,由,所以     (6分)

(II)由题意得方程有两实根

所以关于m的方程有两实根,

即函数与函数的图像在上有两个不同交点。

 

查看答案和解析>>

设数列的各项均为正数.若对任意的,存在,使得成立,则称数列为“Jk型”数列.

(1)若数列是“J2型”数列,且,求

(2)若数列既是“J3型”数列,又是“J4型”数列,证明:数列是等比数列.

【解析】1)中由题意,得,…成等比数列,且公比

所以.

(2)中证明:由{}是“j4型”数列,得,…成等比数列,设公比为t. 由{}是“j3型”数列,得

,…成等比数列,设公比为

,…成等比数列,设公比为

…成等比数列,设公比为

 

查看答案和解析>>


同步练习册答案