题目列表(包括答案和解析)
((本小题共13分)
若数列
满足
,数列
为
数列,记
=
.
(Ⅰ)写出一个满足
,且
〉0的
数列
;
(Ⅱ)若
,n=2000,证明:E数列
是递增数列的充要条件是
=2011;
(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列
,使得
=0?如果存在,写出一个满足条件的E数列
;如果不存在,说明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。
(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)
(Ⅱ)必要性:因为E数列A5是递增数列,所以
.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故
是递增数列.综上,结论得证。
(本小题满分13分)
某鱼塘2009年初有鱼10(万条),每年年终将捕捞当年鱼总量的50%,在第二年年初又将有一部分新鱼放入鱼塘. 根据养鱼的科学技
术知识,该鱼塘中鱼的总量不能超过19.5(万条)(不考虑鱼的自然繁殖和死亡等因素对鱼总量的影响),所以该鱼塘采取对放入鱼塘的新鱼数进行控制,该鱼塘每年只放入新鱼
(万条).
(I)设第
年年初该鱼塘的鱼总量为
(年初已放入新鱼
(万条),2010年为第一年),求
及
与
间的关系;
(Ⅱ)当
时,试问能否有效控制鱼塘总量不超过19.5(万条)?若有效,说明理由;若无效,请指出哪一年初开始鱼塘中鱼的总量超过19.5(万条).
已知函数
.(
)
(1)若
在区间
上单调递增,求实数
的取值范围;
(2)若在区间
上,函数
的图象恒在曲线
下方,求
的取值范围.
【解析】第一问中,首先利用
在区间
上单调递增,则
在区间
上恒成立,然后分离参数法得到
,进而得到范围;第二问中,在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.然后求解得到。
解:(1)
在区间
上单调递增,
则
在区间
上恒成立. …………3分
即
,而当
时,
,故
.
…………5分
所以
.
…………6分
(2)令
,定义域为
.
在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵
…………9分
① 若
,令
,得极值点
,
,
当
,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当
,即
时,同理可知,
在区间
上递增,
有
,也不合题意;
…………11分
② 若
,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使
在此区间上恒成立,只须满足![]()
,
由此求得
的范围是
. …………13分
综合①②可知,当
时,函数
的图象恒在直线
下方.
某校从参加高三年级理科综合物理考试的学生中随机抽出
名学生,将其数学成绩(均为整数)分成六段
,
…
后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在
内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的
平均分;
(Ⅲ)若从
名学生中随机抽取
人,抽到的学生成绩在
记
分,在
记
分,
在
记
分,用
表示抽取结束后的总记分,求
的分布列和数学期望.
![]()
【解析】(1)中利用直方图中面积和为1,可以求解得到分数在
内的频率为![]()
(2)中结合平均值可以得到平均分为:![]()
(3)中用
表示抽取结束后的总记分x, 学生成绩在
的有
人,在
的有
人,在
的有
人,结合古典概型的概率公式求解得到。
(Ⅰ)设分数在
内的频率为
,根据频率分布直方图,则有
,可得
,所以频率分布直方图如右图.……4分
![]()
![]()
(求解频率3分,画图1分)
(Ⅱ)平均分为:
……7分
(Ⅲ)学生成绩在
的有
人,在
的有
人,
在
的有
人.并且
的可能取值是
. ………8分
则
;
;
;
;
.(每个1分)
所以
的分布列为
|
|
0 |
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
…………………13分
![]()
| p+q |
| 2 |
| p+q |
| 2 |
| A、甲 | B、乙 | C、丙 | D、一样多 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com