∵ 过点的切线的斜率为.∴. 查看更多

 

题目列表(包括答案和解析)

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-
3
的直线与曲线M相交于A、B两点.问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由.

查看答案和解析>>

精英家教网已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-
3
的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

查看答案和解析>>

(本小题满分12分)

已知M(-3,0)﹑N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m-1,m0).

(1)求P点的轨迹方程并讨论轨迹是什么曲线?

(2)若, P点的轨迹为曲线C,过点Q(2,0)斜率为的直线与曲线C交于不同的两点A﹑B,AB中点为R,直线OR(O为坐标原点)的斜率为,求证为定值;

(3)在(2)的条件下,设,且,求在y轴上的截距的变化范围.

 

 

 

 

查看答案和解析>>

过点P(-2,0),斜率为3的直线方程是(  )

A.y=3x-2   B.y=3x+2    C.y=3(x-2)    D.y=3(x+2)

查看答案和解析>>

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

查看答案和解析>>


同步练习册答案