题目列表(包括答案和解析)
一支车队有15辆车,某天依次出发执行运输任务,第一辆车于下午2时出发,第二辆车于下午2时10分出发,第三辆车于下午2时20分出发,依此类推。假设所有的司机都连续开车,并都在下午6时停下来休息。
(1)到下午6时最后一辆车行驶了多长时间?
(2)如果每辆车的行驶速度都是60
,这个车队当天一共行驶了多少千米?
【解析】第一问中,利用第一辆车出发时间为下午2时,每隔10分钟即
小时出发一辆
则第15辆车在
小时,最后一辆车出发时间为:
小时
第15辆车行驶时间为:
小时(1时40分)
第二问中,设每辆车行驶的时间为:
,由题意得到
是以
为首项,
为公差的等差数列
则行驶的总时间为:![]()
则行驶的总里程为:
运用等差数列求和得到。
解:(1)第一辆车出发时间为下午2时,每隔10分钟即
小时出发一辆
则第15辆车在
小时,最后一辆车出发时间为:
小时
第15辆车行驶时间为:
小时(1时40分)
……5分
(2)设每辆车行驶的时间为:
,由题意得到
是以
为首项,
为公差的等差数列
则行驶的总时间为:
……10分
则行驶的总里程为:![]()
在直角坐标平面上有一点列
,对一切正整数
,点
位于函数
的图象上,且
的横坐标构成以
为首项,
??为公差的等差数列![]()
![]()
⑴求点
的坐标;
⑵设抛物线列
中的每一条的对称轴都垂直于
轴,第
条抛物线
的顶点为
,且过点
,记与抛物线
相切于
的直线的斜率为
,求:![]()
![]()
⑶设
,等差数列
的任一项
,其中
是
中的最大数,
,求
的通项公式![]()
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,…,Cn,…中的每一条的对称轴都垂直于x轴,第n条抛物线Cn的顶点为Pn,且经过点Dn(0,n2+1)(n∈N*).记与抛物线Cn相切于点Dn的直线的斜率为kn,求证:
+
+…+
<
;
(3)设S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差数列{an}的任意一项an∈S∩T,其中a1是S∩T中的最大数,且-256<a10<-125,求数列{an}的通项公式.
(本小题满分12分)
已知
是公比为
的等比数列,且
成等差数列.
(Ⅰ)求
的值;
(Ⅱ)设
是以2为首项,
为公差的等差数列,其前
项和为
,求使
成立的
最大的
的值.
(本题满分13分已知数列
是公比为![]()
的等比数列,且
成等差数列.
(Ⅰ) 求
的值;
(Ⅱ) 设数列
是以2为首项,
为公差的等差数列,其前
项和为
,
试比较
与
的大小.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com