(2) 求数列{}的通项公式, 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的前n项和sn=n2+n,(n∈N+),数列{bn}满足bn+1=2bn-1,(n∈N+)且b1=5
(1)求数列{an}{bn}的通项公式.
(2)设数列{cn}的前n项和Tn,且cn=
1
anlog2(bn-1)
,证明:Tn
1
2

查看答案和解析>>

(2013•徐州一模)已知a>0,b<0,且a+b≠0,令a1=a,b1=b,且对任意的正整数k,当ak+bk≥0时,ak+1=
1
2
ak-
1
4
bk
bk+1=
3
4
bk
;当ak+bk<0时,bk+1=-
1
4
ak+
1
2
bk
ak+1=
3
4
ak

(1)求数列{an+bn}的通项公式;
(2)若对任意的正整数n,an+bn<0恒成立,问是否存在a,b使得{bn}为等比数列?若存在,求出a,b满足的条件;若不存在,说明理由;
(3)若对任意的正整数n,an+bn<0,且b2n=
3
4
b2n+1
,求数列{bn}的通项公式.

查看答案和解析>>

(文)已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n∈N*)的两根,且a1=1.
(1)求数列和{bn}的通项公式;  
(2)设Sn是数列{an}的前n项和,问是否存在常数λ,使得bn-λSn>0对任意n∈N*都成立,若存在,求出λ的取值范围; 若不存在,请说明理由.

查看答案和解析>>

已知数列{an}(n∈N*)的前n项的Sn=n2
(Ⅰ)求数列{an},的通项公式;
(Ⅱ)若bn=
2
(2n+1)an
,记数列{bn},的前n项和为Tn,求使Tn
9
10
成立的最小正整数n的值.

查看答案和解析>>

已知数列{an}的通项公式为an=3n-1,在等差数列数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,
又a1+b1、a2+b2、a3+b3成等比数列.
(1)求数列{an•bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn

查看答案和解析>>


同步练习册答案