整理.得,从而有.. 查看更多

 

题目列表(包括答案和解析)

为了了解某地母亲身高x与女儿身高Y的相关关系,随机测得10对母女的身高如下表所示:
母亲身x(cm) 159 160 160 163 159 154 159 158 159 157
女儿身Y(cm) 158 159 160 161 161 155 162 157 162 156
计算x与Y的相关系数r≈0.71,通过查表得r的临界值r0.05=0.632,从而有
95%
95%
的把握认为x与Y之间具有线性相关关系,因而求回归直线方程是有意义的.通过计算得到回归直线方程为
y
═34.92+0.78x,因此,当母亲的身高为161cm时,可以估计女儿的身高大致为
161cm
161cm

查看答案和解析>>

为了了解某地母亲身高x与女儿身高y的相关关系,随机测得10对母女的身高如下表所示:
母亲身高x(cm) 159 160 160 163 159 154 159 158 159 157
女儿身高y(cm) 158 159 160 161 161 155 162 157 162 156
计算x与y的相关系数r=0.71,通过查表得r的临界值r0.05=
0.632
0.632
,从而有
95%
95%
的把握认为x与y之间具有线性相关关系,因而求回归直线方程是有意义的.通过计算得到回归直线方程为y=35.2+0.78x,当母亲身高每增加1cm时,女儿身高
0.78
0.78
,当母亲的身高为161cm时,估计女儿的身高为
161cm
161cm
cm.

查看答案和解析>>

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

为了了解某地母亲身高x与女儿身高y的相关关系,随机测得10对母女的身高如下表所示:
母亲身高x(cm)159160160163159154159158159157
女儿身高y(cm)158159160161161155162157162156
计算x与y的相关系数r=0.71,通过查表得r的临界值r0.05=    ,从而有    的把握认为x与y之间具有线性相关关系,因而求回归直线方程是有意义的.通过计算得到回归直线方程为y=35.2+0.78x,当母亲身高每增加1cm时,女儿身高    ,当母亲的身高为161cm时,估计女儿的身高为    cm.

查看答案和解析>>

如图,在直三棱柱中,底面为等腰直角三角形,为棱上一点,且平面平面.

(Ⅰ)求证:点为棱的中点;

(Ⅱ)判断四棱锥的体积是否相等,并证明。

【解析】本试题主要考查了立体几何中的体积问题的运用。第一问中,

易知。由此知:从而有又点的中点,所以,所以点为棱的中点.

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D为BB1中点,可以得证。

(1)过点点,取的中点,连且相交于,面内的直线。……3分

且相交于,且为等腰三角形,易知。由此知:,从而有共面,又易知,故有从而有又点的中点,所以,所以点为棱的中点.               …6分

(2)相等.ABC-A1B1C1为直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D为BB1中点,∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>


同步练习册答案