⑶.记.. 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)已知函数f(x)=
x
x+1
.数列{an}满足:an>0,a1=1,且
an+1
=f(
an
)
,记数列{bn}的前n项和为Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求数列{bn}的通项公式;并判断b4+b6是否仍为数列{bn}中的项?若是,请证明;否则,说明理由.
(Ⅱ)设{cn}为首项是c1,公差d≠0的等差数列,求证:“数列{cn}中任意不同两项之和仍为数列{cn}中的项”的充要条件是“存在整数m≥-1,使c1=md”.

查看答案和解析>>

等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数的图象上.
(Ⅰ)求r的值.
(Ⅱ)当b=2时,记bn=2(log2an=1)(n∈N+),证明:对任意的,不等式成立
b1+1
b1
b2+1
b2
•…
bn+1
bn
n+1

查看答案和解析>>

精英家教网两城市A和B相距20km,现计划在两城市外以AB为直径的半圆弧
AB
上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在
AB
的中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(2)判断弧
AB
上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.

查看答案和解析>>

在1,2,3…,9,这9个自然数中,任取3个数.
(Ⅰ)求这3个数中,恰有一个是偶数的概率;
(Ⅱ)记ξ为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.

查看答案和解析>>

某计算机程序每运行一次都随机出现一个二进制的六位数N=n1,n2,n3,n4,n5,n6,其中N的各位数中,n1=n6=1,nk(k=2,3,4,5)出现0的概率为
2
3
,出现1的概率为
1
3
,记ξ=n1+n2+n3+n4+n5+n6,当该计算机程序运行一次时,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

题号

1

2

3

4

5

6

7

8

9

10

答案

D

C

D

B

C

A

C

B

D

B

11、2;12、;13、;14、;15、;16、

17、解:(1)
,   (6分)
的最小正周期为.                                 (8分)
(2)∵,∴
.                               (12分)

18、解:(1)表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率

②三取取球中有2次出现最大数字3的概率

③三次取球中仅有1次出现最大数字3的概率

.   ……………………………………………………6分

(2)在时, 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布为:

 

 

 

=1×+2×+3×+4× = .………………………………………………12分

19、解:(Ⅰ)作,垂足为,连结,由侧面底面,得底面

因为,所以

,故为等腰直角三角形,

由三垂线定理,得

(Ⅱ)由(Ⅰ)知,依题设

,由,得

的面积

连结,得的面积

到平面的距离为,由于,得

解得

与平面所成角为,则

所以,直线与平面所成的我为

20、解:(I)由题意知,因此,从而

又对求导得

由题意,因此,解得

(II)由(I)知),令,解得

时,,此时为减函数;

时,,此时为增函数.

因此的单调递减区间为,而的单调递增区间为

(III)由(II)知,处取得极小值,此极小值也是最小值,要使)恒成立,只需

,从而

解得

所以的取值范围为

21、解:(Ⅰ)解法一:易知

所以,设,则

因为,故当,即点为椭圆短轴端点时,有最小值

,即点为椭圆长轴端点时,有最大值

解法二:易知,所以,设,则

(以下同解法一)

(Ⅱ)显然直线不满足题设条件,可设直线

联立,消去,整理得:

得:

,即  ∴

故由①、②得

22、(I)解:方程的两个根为

时,

所以

时,

所以

时,

所以时;

时,

所以

(II)解:

(III)证明:

所以

时,

同时,

综上,当时,

 

 

 


同步练习册答案