精英家教网 > 高中数学 > 题目详情
等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数的图象上.
(Ⅰ)求r的值.
(Ⅱ)当b=2时,记bn=2(log2an=1)(n∈N+),证明:对任意的,不等式成立
b1+1
b1
b2+1
b2
•…
bn+1
bn
n+1
分析:本题考查的数学归纳法及数列的性质.
(1)由已知中因为对任意的n∈N+,点(n,Sn),均在函数y=bx+r(b>0且b≠1,b,r均为常数的图象上.根据数列中an与Sn的关系,我们易得到一个关于r的方程,再由数列{an}为等比数列,即可得到r的值.
(2)将b=2代入,我们可以得到数列{an}的通项公式,再由bn=2(log2an+1)(n∈n),我们可给数列{bn}的通项公式,进而可将不等式
b1+1
b1
b2+1
b2
•…
bn+1
bn
n+1
进行简化,然后利用数学归纳法对其进行证明.
解答:解:(1)因为对任意的n∈N+,点(n,Sn),
均在函数y=bx+r(b>0且b≠1,b,r均为常数的图象上.
所以得Sn=bn+r,当n=1时,a1=S1=b+r,
当n≥2时,an=Sn-Sn-1=bn+r-(bn-1+r)=bn-bn-1=(b-1)bn-1
又因为{an}为等比数列,所以r=-1,公比为b,an=(b-1)bn-1
(2)当b=2时,an=(b-1)bn-1=2n-1,bn=2(log2an+1)=2(log22n-1+1)=2n
bn+1
bn
=
2n+1
2n

所以
b1+1
b1
b2+1
b2
bn+1
bn
=
3
2
5
4
7
6
2n+1
2n

下面用数学归纳法证明不等式
b1+1
b1
b2+1
b2
bn+1
bn
=
3
2
5
4
7
6
2n+1
2n
n+1
成立.
当n=1时,左边=
3
2
,右边=
2

因为
3
2
2
,所以不等式成立.
假设当n=k时不等式成立,
b1+1
b1
b2+1
b2
bn+1
bn
=
3
2
5
4
7
6
2k+1
2k
k+1
成立
则当n=k+1时,
左边=
b1+1
b1
b2+1
b2
bk+1
bk
bk+1+1
bk+1
=
3
2
5
4
7
6
2k+1
2k
2k+3
2k+2
k+1
2k+3
2k+2
=
(2k+3)2
4(k+1)
=
4(k+1)2+4(k+1)+1
4(k+1)
=
(k+1)+1+
1
4(k+1)
(k+1)+1

所以当n=k+1时,不等式也成立.
由①、②可得不等式恒成立.
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)叙述并证明等比数列的前n项和公式;
(2)已知Sn是等比数列{an} 的前n项和,S3,S9,S6成等差数列,求证:a1+k,a7+k,a4+k(k∈N)成等差数列;
(3)已知Sn是正项等比数列{an} 的前n项和,公比0<q≤1,求证:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn是等比数列{an}的前n项和,对于任意正整数n,恒有Sn>0,则等比数列{an}的公比q的取值范围为
(-1,0)∪(0,+∞)
(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)统计某校高三年级100名学生的数学月考成绩,得到样本频率分布直方图如下图所示,已知前4组的频数分别是等比数列{an}的前4项,后6组的频数分别是等差数列{bn}的前6项,
(1)求数列{an}、{bn}的通项公式;
(2)设m、n为该校学生的数学月考成绩,且已知m、n∈[70,80)∪[140,150],求事件|m-n|>10”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,又Wn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,如果a8=10,那么S15:W15=
100
100

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是正项等比数列{an}的前n项和,S2=4,S4=20则数列的首项a1=(  )

查看答案和解析>>

同步练习册答案