题目列表(包括答案和解析)
已知
是数列{
}的前n项和,并且
=1,对任意正整数n,
;设
).(I)证明数列
是等比数列,并求
的通项公式;
(II)设
的前n项和,求
.
已知数列
的首项
,
,
.
(1)求
的通项公式;
(2)证明:对任意的
,
,
;
(3)证明:
.
设数列
前
项和为
,且
。其中
为实常数,
且
。
(1)求证:
是等比数列;
(2)若数列
的公比满足
且
,求
的
通项公式;
(3)若
时,设
,是否存在最大的正整数
,使得对任意
均有
成立,若存在求出
的值,若不存在请说明理由。
(08年洛阳市统一考试文)(12分) 数列
是公差
的等差数列,且
。
(1)求
的通项公式;
(2)求数列
的前n项和Sn。
1、A 2,、B 3、 D 4,、B 5、 D 6、C 7、A 8、B 9、A 10、D
11、(,1] 12、-或1 13、6p 14、2 15、11
16解:解:(Ⅰ)



当
,即
时,
取得最大值
.
(Ⅱ)当
,即
时,
所以函数
的单调递增区间是

17、解:(Ⅰ)从15名教师中随机选出2名共
种选法, …………………………2分
所以这2人恰好是教不同版本的男教师的概率是
. …………………5分
(Ⅱ)由题意得
;
;
.
故
的分布列为

0
1
2





所以,数学期望
.
18、解法一:(Ⅰ)证明:连接


∥
。 ……………………3分

∥平面
…………………………5分
(Ⅱ)解:在平面



―
―
……………………8分
设
。
在
所以,二面角
―
―
的大小为
。 ………………12分
19、(I)解:当
①当
, 方程化为

②当
, 方程化为1+2x
= 0, 解得
,
由①②得, 
(II)解:不妨设
,
因为
所以
是单调递函数, 故
上至多一个解,

20、解:(Ⅰ)由
知,点
的轨迹
是以
、
为焦点的双曲线右支,由
,∴
,故轨迹E的方程为
…(3分)
(Ⅱ)当直线l的斜率存在时,设直线l方程为
,与双曲线方程联立消
得
,设
、
,
|