某蔬菜公司收购到某种蔬菜140吨.准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务.该公司应按排几天精加工.几天粗加工?设安排天精加工.天粗加工.为解决这个问题.所列方程组正确的是( ) 查看更多

 

题目列表(包括答案和解析)

某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨,现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?

查看答案和解析>>

某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.为解决这个问题,所列方程组正确的是(  )
A、
x+y=140
16x+6y=15
B、
x+y=140
6x+16y=15
C、
x+y=15
16x+6y=140
D、
x+y=15
6x+16y=140

查看答案和解析>>

某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售.已知每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,该公司的加工能力是:每天可以精加工6吨或者粗加工16吨.现有15天时间可以用来加工这种蔬菜.如何合理安排粗加工和精加工的时间,才能使公司恰好在15天内将蔬菜全部加工完?该公司出售这些加工后的蔬菜共可获利多少元?

查看答案和解析>>

某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天可以精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么照此安排,该公司出售这些加工后的蔬菜共可获利多少元?

查看答案和解析>>

26、某蔬菜公司收购到某种蔬菜140吨,若在市场上直接销售,每吨可获利500元;若经过粗加工后再销售,每吨可获利1000元;精加工后销售,每吨可获利2000元.该公司的加工能力是:每天可以精加工6吨或粗加工16吨(两种加工方式不能同时进行),受季节限制,这批蔬菜必须在15天内全部加工或销售完毕,为此该公司设计了如下几种方案:
方案一:将所收购的蔬菜直接在市场上销售;
方案二:将尽可能多的蔬菜进行精加工,余下的部分直接在市场上销售;
方案三:一部分蔬菜进行粗加工,一部分进行精加工,并恰好15天加工完全部蔬菜.
如果你是公司经理,你会选择哪种方案,以获取更多的利润?试说明理由.

查看答案和解析>>

一.选择题

1. B  2.D  3.C  4.A  5.D  6.D  7.C  8.C  9.C  10.C

二.填空题

11.  12. 3858  13.;  14.  15. 5n+3或3(2n+1)-n

16. 1;提示:(-1)×(-3)-2=3-2=1

三.解答题

17.解:原式=()?=x+2

把x=+1代入上式得:原式=+3

18.(1)43  (2)略   (3) 4  

19.证CDDECBBE

20.解:(1)

这次考察中一共调查了60名学生.

   (2)

       

        在扇形统计图中,“乒乓球”

部分所对应的圆心角为

   (3)补全统计图如图:

   (4)

    可以估计该校学生喜欢篮球活动的约有450人.

21.解:(1)设2006年平均每天的污水排放量为万吨,则2007年平均每天的污水排放量为1.05x万吨,依题意得:

             

            解得

    经检验,是原方程的解.

           

    答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨.

(2)解:设2010年平均每天的污水处理量还需要在2007年的基础上至少增加万吨,依题意得:

     

    解得

    答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加万吨.

22.(1)P(一等奖)=;P(二等奖)=,P(三等奖)=; 

  (2) 

   

  ∴活动结束后至少有5000元赞助费用于资助贫困生。

23.解:(1)在中,

.??????????????????????????????????????????????? 2分

.????????????????? 4分

(2)直线相切.

证明:连结

.??????????????????? 5分

所以是等腰三角形顶角的平分线.

.??????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

,得.?????????????????????????????????? 7分

知,直线相切.?????????????????????????????????????????? 8分

24.解:(1)如图,建立直角坐标系,设二次函数解析式为y=ax2c 

  ∵ D(-0.4,0.7),B(0.8,2.2),

  ∴   解得:

  ∴绳子最低点到地面的距离为0.2米

  (2)分别作EG⊥AB于G,FH⊥AB于H,        

  AG=(AB-EF)=(1.6-0.4)=0.6.

  在Rt△AGE中,AE=2,

 EG=≈1.9. 

∴ 2.2-1.9=0.3(米).   ∴ 木板到地面的距离约为0.3米

25.解:⑴ 解法一:设

任取x,y的三组值代入,求出解析式

令y=0,求出;令x=0,得y=-4,

∴ A、B、C三点的坐标分别是A(2,0),B(-4,0),C(0,-4) .

解法二:由抛物线P过点(1,-),(-3,)可知,

抛物线P的对称轴方程为x=-1,

又∵ 抛物线P过(2,0)、(-2,-4),则由抛物线的对称性可知,

点A、B、C的坐标分别为 A(2,0),B(-4,0),C(0,-4) .

⑵ 由题意,,而AO=2,OC=4,AD=2-m,故DG=4-2m

,EF=DG,得BE=4-2m,∴ DE=3m

∴SDEFG=DG?DE=(4-2m) 3m12m6m2 (0<m<2) .

 

⑶ ∵SDEFG12m6m2 (0<m<2),∴m=1时,矩形的面积最大,且最大面积是6 .

当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0),   

设直线DF的解析式为y=kx+b,易知,k=,b=-,∴

又可求得抛物线P的解析式为:

,可求出x=. 设射线DF与抛物线P相交于点N,则N的横坐标为,过N作x轴的垂线交x轴于H,有

点M不在抛物线P上,即点M不与N重合时,此时k的取值范围是

k≠且k>0.

 


同步练习册答案