C. D. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,矩形ABCD与矩形AB′C′D全等,且所在平面所成的二面角为a,记两个矩形对角线的交点分别为Q,Q′,AB=a,AD=b.
(1)求证:QQ′∥平面ABB′;
(2)当b=
2
a
,且a=
π
3
时,求异面直线AC与DB′所成的角;
(3)当a>b,且AC⊥DB'时,求二面角a的余弦值(用a,b表示).

查看答案和解析>>

知|
a
|=1,|
b
|=2,
a
b
的夹角为60°,
c
=3
a
+
b
d
a
-
b
,若
c
d
,则实数λ的值为(  )
A、
7
2
B、-
7
2
C、
7
4
D、-
7
4

查看答案和解析>>

某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率,如图.( 例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为
1
10
,路段CD发生堵车事件的概率为
1
15
).
(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;
(2)若记ξ路线A→(3)C→(4)F→(5)B中遇到堵车次数为随机变量ξ,求ξ的数学期望Eξ.

查看答案和解析>>

(2012•惠州一模)甲乙两个学校高三年级分别有1200人,1000人,为了了解两个学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两个学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 3 4 8 15
分组 [110,120) [120,130) [130,140) [140,150]
频数 15 x 3 2
乙校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 1 2 8 9
分组 [110,120) [120,130) [130,140) [140,150]
频数 10 10 y 3
(Ⅰ)计算x,y的值.
甲校 乙校 总计
优秀
非优秀
总计
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率.
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有90%的把握认为两个学校的数学成绩有差异.
参考数据与公式:
由列联表中数据计算K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

临界值表
P(K≥k0 0.10 0.05 0.010
k0 2.706 3.841 6.635

查看答案和解析>>

计算机中常用16进制,采用数字0~9和字母A~F共16个计数符号与10进制得对应关系如下表:
16进制 0 1 2 3 4 5 6 7 8 9 A B C D E F
10进制 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
例如用16进制表示D+E=1B,则(2×F+1)×4=(  )

查看答案和解析>>

一、选择题:  B C A D B       C A B D C

二、填空题:

  11、       12、      13、  

14、      15、②③

三、解答题:

16.解:(1)    ……………………………1分

=

==      …………………………………………4分 

∵θ∈[π,2π],∴

≤1      则 max=2. ………………………………………………6分                                             

(2)  由已知,得     …………………………………8分            

        ……………………10分  

∵θ∈[π,2π]∴,∴. …………………12分

17.解:依题意知:.……4分

   (1)对于

是奇函数……………………………………….……6分

   (2)时,单调递减,

时,单调递增………………………………………….…8分

……….…………..…10分

………….……12分

18.解:(1)当

                    ………………2分

,..............................................5分

        ................6分

定义域为     .................................7分

   (2)对于,             

显然当(元),    ..................................9分

∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多。..........12分

 

19.解:(1)由题意               …………………………2分

时,取得极值,  所以

                即      …………………4分

           此时当时,,当时,

             是函数的最小值。          ………………………6分

       (2)设,则  ……8分

            设

            ,令解得

       列表如下:

 

 

__

0

+

 

 

 

 

 

 

 

 

函数上是增函数,在上是减函数。

时,有极大值;当时,有极小值……10分

函数的图象有两个公共点,函数的图象有两个公共点

     或             ……12分

 

20.解:(1)

.令,则.…………2分

时,,则数列不是等比数列. 

时,数列不是等比数列.………………… 5分

时,,则数列是等比数列,且公比为2. 

,即.解得.……7分

(2)由(Ⅰ)知,当时,, 

,   ………………………①

, …………②

由①-②:

               

,    ………………………………..………11分

.      …………………..………13分

 

21.解:(1)∵成等比数列 ∴ 是椭圆上任意一点,依椭圆的定义得

为所求的椭圆方程.         ……………………5分     

(2)假设存在,因与直线相交,不可能垂直轴   …………………6分

 因此可设的方程为:

  ①     ……………………8分

方程①有两个不等的实数根

 ②        ………10分

设两个交点的坐标分别为 ∴

∵线段恰被直线平分 ∴

 ∴ ③ 把③代入②得

  ∴ ∴解得    ………13分

∴直线的倾斜角范围为                 …………………14分

 


同步练习册答案