3.立体几何初步 (1)空间几何体 ① 认识柱.锥.台.球及其简单组合体的结构特征.并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体.球.圆柱.圆锥.棱柱等的简易组合)的三视图.能识别上述的三视图所表示的立体模型.会用斜二侧法画出它们的直观图. ③ 会用平行投影与中心投影两种方法.画出简单空间图形的三视图与直观图.了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上.尺寸.线条等不作严格要求). ⑤ 了解球.棱柱.棱锥.台的表面积和体积的计算公式. (2)点.直线.平面之间的位置关系 ① 理解空间直线.平面位置关系的定义.并了解如下可以作为推理依据的公理和定理. ◆公理1:如果一条直线上的两点在一个平面内.那么这条直线上所有的点在此平面内. ◆公理2:过不在同一条直线上的三点.有且只有一个平面. ◆公理3:如果两个不重合的平面有一个公共点.那么它们有且只有一条过该点的公共直线. ◆公理4:平行于同一条直线的两条直线互相平行. ◆定理:空间中如果一个角的两边与另一个角的两边分别平行.那么这两个角相等或互补. ② 以立体几何的上述定义.公理和定理为出发点.认识和理解空间中线面平行.垂直的有关性质与判定. 理解以下判定定理. ◆如果平面外一条直线与此平面内的一条直线平行.那么该直线与此平面平行. ◆如果一个平面内的两条相交直线与另一个平面都平行.那么这两个平面平行. ◆如果一条直线与一个平面内的两条相交直线都垂直.那么该直线与此平面垂直. ◆如果一个平面经过另一个平面的垂线.那么这两个平面互相垂直. 理解以下性质定理.并能够证明. ◆如果一条直线与一个平面平行.经过该直线的任一个平面与此平面相交.那么这条直线就和交线平行. ◆如果两个平行平面同时和第三个平面相交.那么它们的交线相互平行. ◆垂直于同一个平面的两条直线平行. ◆如果两个平面垂直.那么一个平面内垂直于它们交线的直线与另一个平面垂直. ③ 能运用公理.定理和已获得的结论证明一些空间位置关系的简单命题. 查看更多

 

题目列表(包括答案和解析)

已知集合A={1,2,3,4},B={0,1,2},则A→B的映射的个数有(  )

查看答案和解析>>

已知F1,F2是双曲线E的两个焦点,以线段F1F2为直径的圆与双曲线的一个公共点是M,若∠MF1F2=30°则双曲线E的离心率是(  )

查看答案和解析>>

已知A={1,3},B={3,4,5},则集合A∩B=(  )

查看答案和解析>>

已知全集U={1,2,3,4,5,6),集合A={2,4,5),B={1,3,5),则(?UA)∩B=(  )

查看答案和解析>>

设全集U={1,3,5,7},则集合M满足CUM={5,7},则集合M为(  )

查看答案和解析>>


同步练习册答案