18.甲.乙两个篮球运动员相互没有影响地站在罚球线上投球.其中甲的命中率为.乙的命中率为.现在每人都投球三次.且各次投球的结果互不影响.求:(1)甲恰好投进两球的概率, (2)甲乙两人都恰好投进两球的概率, 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为.

(Ⅰ)求乙投球的命中率

(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.

查看答案和解析>>

(本小题满分12分)

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为

(Ⅰ)求乙投球的命中率

(Ⅱ)求甲投球2次,至少命中1次的概率;

(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.

查看答案和解析>>

(本小题满分12分)

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为.

(Ⅰ)求乙投球的命中率

(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.

 

查看答案和解析>>

(08年天津卷理)(本小题满分12分)

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为

(Ⅰ)求乙投球的命中率

(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.

查看答案和解析>>

(08年天津卷文)(本小题满分12分)

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为

(Ⅰ)求乙投球的命中率

(Ⅱ)求甲投球2次,至少命中1次的概率;

(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.

查看答案和解析>>

一、选择题(60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

A

 

D

C

B

 

B

 

D

D

A

B

 

C

B

 

二、填空题(20分)

13.  15    14.5 15.45,16.  

三、解答题(70分)

17.(1)   ,∴,∴

           (5分)

(2

     ,∴f(x)的值域为                (文10分)

18. (1)记“甲恰好投进两球”为事件A,则           (6分)

(2)甲、乙两人均恰好投入2个球的概率

19.(1)                     (6分)

(2)                                              

                               

20.(1)设数列的公比为,则

                                                                         (文6分,理4分)

(2)由(1)可知

所以数列是一个以为首项,1为公差的等差数列

                       (文12分,理8分)

21. ⑴由已知

     

     所求双曲线C的方程为;

⑵设P点的坐标为,M,N的纵坐标分别为.

 

 

    

共线

同理

              

22.

(1)由题意得:

∴在;在;在

在此处取得极小值

由①②③联立得:

                                                         (6分)

(2

①当时,

②当m<2时,g(x)在[2,3]上单调递减,

③当m>3时,g(x)在[2,3]上单调递增,(文12分)

 


同步练习册答案