(Ⅱ)若..求证数列是等比数列.并求数列的前项和. 查看更多

 

题目列表(包括答案和解析)

已知数列中,

(Ⅰ)求证:是等比数列,并求的通项公式

(Ⅱ)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围。

 

查看答案和解析>>

数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1).
(1)求证{an}是等比数列,并求{an}的通项公式;
(2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn

查看答案和解析>>

己知数列{an}满足:a1=1,an+1=
1
2
an+n,n为奇数
an-2n,n为偶数

(1)求a2,a3
(2)设bn=a2n-2,n∈N*,求证{bn} 是等比数列,并求其通项公式;
(3)在(2)条件下,求数列{an} 前100项中的所有偶数项的和S.

查看答案和解析>>

设数列{an}是公差为d的等差数列,a3+a5=2,S20=150,又bn=2an-2an+1(n∈N*)
(1)求a1,d;
(2)求证{bn}是等比数列,并求bn的通项公式;
(3)设k为某自然数,且满足
lim
n→∞
(bkbk+1+bk+1bk+2+…+bnbn+1)=
1
96
,求k的值.

查看答案和解析>>

已知数列{an}满足:a1=1,an+1=
1
2
an+n,n为奇数
an-2n,n为偶数

(1)求a2、a3、a4、a5
(2)设bn=a2n-2,n∈N,求证{bn}是等比数列,并求其通项公式;
(3)在(2)条件下,求证数列{an}前100项中的所有偶数项的和S100<100.

查看答案和解析>>

1.    2.     3.a=-2.     4.    5.    6.  

7.       8.     9.  10.     11.   12.0   13.    14.18

 

15.解:(Ⅰ)由,         3分

,                      5分

,∴  。                                     7分

(Ⅱ)由可得,,                    9分

得,,                                    12分

所以,△ABC面积是                              14分

 

 

17.解:(Ⅰ)在Rt△ABC中,AB=1,

∠BAC=60°,∴BC=,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,

∴CD=2,AD=4.

∴SABCD

.……………… 3分

则V=.     ……………… 5分

(Ⅱ)∵PA=CA,F为PC的中点,

∴AF⊥PC.            ……………… 7分

∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,

∴CD⊥平面PAC.∴CD⊥PC.

∵E为PD中点,F为PC中点,

∴EF∥CD.则EF⊥PC.       ……… 9分

∵AF∩EF=F,∴PC⊥平面AEF.…… 10分

(Ⅲ)证法一:

取AD中点M,连EM,CM.则EM∥PA.

∵EM 平面PAB,PA平面PAB,

∴EM∥平面PAB.   ……… 12分

在Rt△ACD中,∠CAD=60°,AC=AM=2,

∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.

∵MC 平面PAB,AB平面PAB,

∴MC∥平面PAB.  ……… 14分

∵EM∩MC=M,

∴平面EMC∥平面PAB.

∵EC平面EMC,

∴EC∥平面PAB.   ……… 15分

证法二:

延长DC、AB,设它们交于点N,连PN.

∵∠NAC=∠DAC=60°,AC⊥CD,

∴C为ND的中点.         ……12分

∵E为PD中点,∴EC∥PN.……14分

∵EC 平面PAB,PN 平面PAB,

∴EC∥平面PAB.   ……… 15分

 

 

17.解:(Ⅰ)n≥2时,.     ………………… 4分

n=1时,,适合上式,

.               ………………… 5分

(Ⅱ).          ………………… 8分

∴数列是首项为4、公比为2的等比数列.   ………………… 10分

,∴.……………… 12分

Tn.            ………………… 14分

18.解:(Ⅰ) …… 4分

                        …………………… 8分

 

 

 

 

(Ⅱ)当0≤t<10时,y的取值范围是[1200,1225],

在t=5时,y取得最大值为1225;               …………………… 11分

当10≤t≤20时,y的取值范围是[600,1200],

在t=20时,y取得最小值为600.               …………………… 14分

(答)总之,第5天,日销售额y取得最大为1225元;

第20天,日销售额y取得最小为600元.         …………………… 15分

 

 

 

19. 解:(Ⅰ)设圆心,则,解得…………………(3分)

则圆的方程为,将点的坐标代入得,故圆的方程为

…………(5分)

(Ⅱ)设,则,且…………………(7分)

==,所以的最小值为(可由线性规划或三角代换求得)

…………(10分)

(Ⅲ)由题意知, 直线和直线的斜率存在,且互为相反数,故可设,

,由,得

……………………(11分)

  因为点的横坐标一定是该方程的解,故可得………………………

(13分)

  同理,,所以=

  所以,直线一定平行…………………………………………………………………(15分)

20.解:(Ⅰ)

,且.    …………………… 2分

解得a=2,b=1.                           …………………… 4分

(Ⅱ),令

,令,得x=1(x=-1舍去).

内,当x∈时,,∴h(x)是增函数;

当x∈时,,∴h(x)是减函数.     …………………… 7分

则方程内有两个不等实根的充要条件是……10分

.                                               …………………… 12分

(Ⅲ)

假设结论成立,则有

①-②,得

由④得

.即

.⑤                              …………………… 14分

(0<t<1),

>0.∴在0<t<1上增函数.

,∴⑤式不成立,与假设矛盾.

.                     ……………………………16

 


同步练习册答案