17. 查看更多

 

题目列表(包括答案和解析)

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

(07年安徽卷)(本小题满分14分)

   某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后第年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利,这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为n(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以Tn表示到第n年末所累计的储备金总额.

 (Ⅰ)写出TnTn-1n≥2)的递推关系式;

 (Ⅱ)求证:Tn=An+Bn,其中是一个等比数列,是一个等差数列.

查看答案和解析>>

(本小题满分14分)
指出函数上的单调性,并证明之.

查看答案和解析>>

(07年安徽卷文)(本小题满分14分)设F是抛物线G:x2=4y的焦点.

   (Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程:

(Ⅱ)设AB为势物线G上异于原点的两点,且满足,延长AFBF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.

查看答案和解析>>

(07年安徽卷)(本小题满分14分)

如图,在六面体中,四边形ABCD是边 

长为2的正方形,四边形是边长为1的正方

形,平面,平面ABCD

求证: (Ⅰ)共面,共面.

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小(用反三角函数值表示).

                                                             

 第(17)题图

查看答案和解析>>

必修

一、填空题

1、8  2、  3、2|P|  4、  5、向左移,在把各点的横坐标伸长到原来的3倍

6、18  7、120度  8、  9、  10、②④  11、  12、  13、  14、

二、解答题

15.解:(Ⅰ).………… 4分

,得

∴函数的单调增区间为 .………… 7分

(Ⅱ)由,得

.            ………………………………………… 10分

,或

. 

,∴.     …………………………………………… 14分

16.解:(Ⅰ)n≥2时,.     ………………… 4分

n=1时,,适合上式,

.               ………………… 5分

(Ⅱ).          ………………… 8分

∴数列是首项为4、公比为2的等比数列.   ………………… 10分

,∴.……………… 12分

Tn.            ………………… 14分

17、⑴    ⑵        ⑶不能

18、⑴

=1时,的最大值为20200,=10时,的最小值为12100。

19、⑴易知AB恒过椭圆的右焦点F(,0)    ⑵ S=       ⑶存在

20、⑴

⑶(

附加题选修参考答案

1、⑴BB=  , ⑵  

2、⑴    ⑵  ,  ,EX=1

3、   

4、⑴    ⑵ MN=2 

5、⑴特征值为2和3 ,对应的特征向量分别为

,椭圆在矩阵的作用下对应得新方程为

6、提示:,然后用基本不等式或柯西不等式即可。

 

 


同步练习册答案