综上所述.点T的轨迹C的方程是 查看更多

 

题目列表(包括答案和解析)

精英家教网已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足|
F1Q
|=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足
PT
TF2
=0,|
TF2
|≠0.
(Ⅰ)设x为点P的横坐标,证明|
F1P
|=a+
c
a
x;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=b2.若存在,求∠F1MF2的正切值;若不存在,请说明理由.

查看答案和解析>>

设双曲线C:
x2
2
-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.
(1)若直线m与x轴正半轴的交点为T,且
A1P
A2Q
=1,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设
FA
=λ•
FB
,若λ∈[-2,-1],求|
TA
+
TB
|(T为(1)中的点)的取值范围.

查看答案和解析>>

(2011•揭阳一模)已知定点A(-3,0),MN分别为x轴、y轴上的动点(M、N不重合),且AN⊥MN,点P在直线MN上,
NP
=
3
2
MP

(1)求动点P的轨迹C的方程;
(2)设点Q是曲线x2+y2-8x+15=0上任一点,试探究在轨迹C上是否存在点T?使得点T到点Q的距离最小,若存在,求出该最小距离和点T的坐标,若不存在,说明理由.

查看答案和解析>>

已知向量
a
=(x,
2
y),
b
=(1,0)
,且(
a
+2
b
)⊥(
a
-2
b
)
.点T(x,y)
(1)求点T的轨迹方程C;
(2)过点(0,1)且以(2,
2
)
为方向向量的一条直线与轨迹方程C相交于点P,Q两点,OP,OQ所在的直线的斜率分别是kOP、kOQ,求kOP•kOQ的值.

查看答案和解析>>

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>


同步练习册答案