正方形的面积--10分.圆的面积为--11分 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图,面积为的正方形中有一个不规则的图形M,可按下面方法估计M的面积:在正方形中随机投掷个点,若个点中有个点落入M中,则M的面积的估计值为. 假设正方形的边长为2,M的面积为1,并向正方形中随机投掷10 000个点,以表示落入M中的点的数目.

(Ⅰ)求的均值

(Ⅱ)求用以上方法估计M的面积时,M的面积的估计值与实际值之差在区间内的概率.

附表:

2424

2425

2574

2575

0.0403

0.0423

0.9570

0.9590

 

查看答案和解析>>

(本小题满分10分)圆经过点A(2,-3)和B(-2,-5).

(1)若圆的面积最小,求圆的方程;

(2)若圆心在直线x-2y-3=0上,求圆的方程.

 

查看答案和解析>>

(本小题满分10分)圆经过点A(2,-3)和B(-2,-5).
(1)若圆的面积最小,求圆的方程;
(2)若圆心在直线x-2y-3=0上,求圆的方程.

查看答案和解析>>


选作题,请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分,每道题满分10分)
22、选修4—1:几何证明选讲
如图,△ABC的角平分线AD的延长线交于的外按圆于点E。
(I)证明:△ABC∽△ADC
(II)若△ABC的面积为AD·AE,求∠BAC的大小。

23、选修4—4:坐标系与参数方程
已知半圆C的参数方程为参数且(0≤
P为半圆C上一点,A(1,0)O为坐标原点,点M在射线OP上,线段OM与  的长度均为
(I)求以O为极点,轴为正半轴为极轴建立极坐标系求点M的极坐标。
(II)求直线AM的参数方程。
24、选修4—5,不等式选讲
已知函数  
(I)若不等式的解集为求a值。
(II)在(I) 条件下,若对一切实数恒成立,求实数m的取值范围。

查看答案和解析>>

17、在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.在这个定义下,给出下列命题:
①到原点的“折线距离”等于1的点的集合是一个正方形;
②到原点的“折线距离”等于1的点的集合是一个圆;
③到M(-1,0),N(1,0)两点的“折线距离”之和为4的点的集合是面积为6的六边形;
④到M(-1,0),N(1,0)两点的“折线距离”差的绝对值为1的点的集合是两条平行线.
其中正确的命题是
①③④
.(写出所有正确命题的序号)

查看答案和解析>>


同步练习册答案