题目列表(包括答案和解析)
已知{
}是等差数列,
,
,则过点
,
的直线的斜率为
A.4 B.
C.
D.![]()
已知等差数列{an,}的前n项和为sn,且S2=10,S5=55,则过点P(n,),Q(n+2,)(n∈N+*)的直线的斜率为
A、4 B、3 C、2 D、1
设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC顶点C的轨迹方程;
(Ⅱ)设顶点C的轨迹为D,已知直线
过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线
的方程.
【解析】
第一问因为设C(x,y)(
)
……3分
∵M是不等边三解形ABC的外心,∴|MA|=|MC|,即
(2)
由(1)(2)得
.所以三角形顶点C的轨迹方程为
,
.…6分
第二问直线l的方程为y=kx+1
由
消y得
。 ∵直线l与曲线D交于P、N两点,∴△=
,
又
,
∵
,∴![]()
得到直线方程。
设抛物线
:
(
>0)的焦点为
,准线为
,
为
上一点,已知以
为圆心,
为半径的圆
交
于
,
两点.
(Ⅰ)若
,
的面积为
,求
的值及圆
的方程;
(Ⅱ)若
,
,
三点在同一条直线
上,直线
与
平行,且
与
只有一个公共点,求坐标原点到
,
距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线
于
轴的焦点为E,圆F的半径为
,
![]()
则|FE|=
,
=
,E是BD的中点,
(Ⅰ) ∵
,∴
=
,|BD|=
,
设A(
,
),根据抛物线定义得,|FA|=
,
∵
的面积为
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=
, ∴圆F的方程为:
;
(Ⅱ) 解析1∵
,
,
三点在同一条直线
上, ∴
是圆
的直径,
,
由抛物线定义知
,∴
,∴
的斜率为
或-
,
∴直线
的方程为:
,∴原点到直线
的距离
=
,
设直线
的方程为:
,代入
得,
,
∵
与
只有一个公共点,
∴
=
,∴
,
∴直线
的方程为:
,∴原点到直线
的距离
=
,
∴坐标原点到
,
距离的比值为3.
解析2由对称性设
,则![]()
点
关于点
对称得:![]()
得:
,直线![]()
切点![]()
直线![]()
坐标原点到
距离的比值为![]()
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 50 | 60 | 70 |
A、
| ||
B、
| ||
C、
| ||
D、
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com