12分 题号123456789101112答案CADBACDCBDBA 查看更多

 

题目列表(包括答案和解析)

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是M2=
11
01

(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为{x|x≥
1
2
或x≤-
5
6
}
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>

(选做题)请考生在A、B、C三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.
A.选修4-1(几何证明选讲)已知AD为圆O的直径,直线BA与圆O相切与点A,直线OB与弦AC垂直并相交于点G,与弧AC相交于M,连接DC,AB=10,AC=12.
(Ⅰ)求证:BA•DC=GC•AD;(Ⅱ)求BM.
B.选修4-4(坐标系与参数方程)求直线
x=1+4t
y=-1-3t
(t为参数)被曲线ρ=
2
cos(θ+
π
4
)
所截的弦长.
C.选修4-5(不等式选讲)(Ⅰ)求函数y=3
x-5
+4
6-x
的最大值;
(Ⅱ)已知a≠b,求证:a4+6a2b2+b4>4ab(a2+b2).

查看答案和解析>>

(本小题满分12分)
设函数.
(Ⅰ)若当取得极值,求a的值,并讨论的单调性;
(Ⅱ)若存在极值,求a的取值范围,并证明所有极值之和大于.
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。做答时请写清题号。

查看答案和解析>>

(本小题满分12分)上海世博会举办时间为2010年5月1日~10月31日。福建馆以“海西”为参博核心元素,主题为“潮涌海西,魅力福建”。福建馆招募了60名志愿者,某高校有l3人入选,其中5人为中英文讲解员,8人为迎宾礼仪,它们来自该校的5所所学院(这5所学院编号为1~5号),人员分布如图所示。若从这13名入选者中随机抽取3人。

(1)求这3人所在学院的编号恰好成等比数列的概率;

(2)求这3人中中英文讲解员人数的分布列及数学期望。

 

查看答案和解析>>

(本小题满分12分)

某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.

    (1)求走出迷宫时恰好用了1小时的概率;

(2)求走出迷宫的时间超过3小时的概率.

查看答案和解析>>


同步练习册答案