查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a

    D、E分别为棱AB、BC的中点, M为棱AA1­上的点,二面角MDEA为30°.

   (1)求MA的长;w.w.w.k.s.5.u.c.o.m      

   (2)求点C到平面MDE的距离。

查看答案和解析>>

(本小题满分12分)某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。

(1)求其中的甲乙两人必须相邻的站法有多少种? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙两人不相邻的站法有多少种?

(3)求甲不站最左端且乙不站最右端的站法有多少种 ?

查看答案和解析>>

(本小题满分12分)

某厂有一面旧墙长14米,现在准备利用这面旧墙建造平面图形为矩形,面积为126平方米的厂房,工程条件是①建1米新墙费用为a元;②修1米旧墙的费用为元;③拆去1米旧墙,用所得材料建1米新墙的费用为元,经过讨论有两种方案: (1)利用旧墙的一段x米(x<14)为矩形厂房一面的边长;(2)矩形厂房利用旧墙的一面边长x≥14.问如何利用旧墙,即x为多少米时,建墙费用最省?(1)、(2)两种方案哪个更好?

 

查看答案和解析>>

(本小题满分12分)

已知a,b是正常数, ab, xy(0,+∞).

   (1)求证:,并指出等号成立的条件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的结论求函数的最小值,并指出取最小值时相应的x 的值.

查看答案和解析>>

(本小题满分12分)

已知a=(1,2), b=(-2,1),xaby=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR x?y=5,求证k≥1.

查看答案和解析>>

一.选择题

序号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

B

D

D

C

A

A

C

B

D

A

 

二填空题

13. 2或8;        14. ;            15.;           16..

三.解答题

17.解:(Ⅰ)

………………………………………………………………4分

…………………………6分

(Ⅱ) …………………………………………………8分

…………………………………………………………………………10分

………………………………………………………………………………12分

 

18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4. ……………………………2分

.………………………………………………………………4分

则V=.     ……………………………………………………………… 6分

(Ⅱ)∵PA=CA,F为PC的中点,∴AF⊥PC.            ……………………………………8分

∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.

∵E为PD中点,F为PC中点,∴EF∥CD.则EF⊥PC.     ………………………………10分

∵AF∩EF=F,∴PC⊥平面AEF.………………………………………………………………12分

 

19.设第一个匣子里的三把钥匙为A,B,C,第二个匣子里的三把钥匙为a,b,c(设A,a能打开所有门,B只能打开第一道门,b只能打开第二道门,C,c不能打开任何一道门)

(Ⅰ)第一道门打不开的概率为;……………………………………………………………5分

(Ⅱ)能进入第二道门的情况有Aa,Ab,Ac,Ba,Bb,而二把钥匙的不同情况有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9种,故能进入第二道门的概率为……………………………………………………………12分

 

20.(Ⅰ)依题

 

…………………………………………………3分

为等差数列,a1=1,d=2

………………………………………………………………………………………………5分

(Ⅱ)设公比为q,则由b1b2b3=8,bn>0…………………………………………………6分

成等差数列

………………………………………………………………………………………8分

…………………………………………………………………………………10分

……………………………………………………………………12分

 

21解:(Ⅰ)依题PN为AM的中垂线

…………………………………………………2分

又C(-1,0),A(1,0)

所以N的轨迹E为椭圆,C、A为其焦点…………………………………………………………4分

a=,c=1,所以为所求………………………………………………………5分

(Ⅱ)设直线的方程为:y=k(x-1),代入椭圆E的方程:x2+2y2=2得:

(1+2k2)x2-4k2x+2k2-2=0………………(1)

设G(x1,y1)、H(x2,y2),则x1,x2是(1)的两个根.

…………………………………………………………7分

依题

………………………………………………………9分

解得:………………………………………………………………………12分

 

22.解法(一):

   时,……①

时,恒成立,

时,①式化为……②

时,①式化为……③…………………………………………………5分

,则…………………………7分

所以

故由②,由③………………………………………………………………………13分

综上时,恒成立.………………………………………………14分

解法(二):

   时,……①

时,,不合题意…………………………………………………2分

恒成立

上为减函数,

,矛盾,…………………………………………………………………………………5分

=

   若,故在[-1,1]内,

,得,矛盾.

依题意,  解得

综上为所求.……………………………………………………………………………14分

 

 

 

 

 


同步练习册答案