(1)若t为正整数.求的解析式(已知公式:, 查看更多

 

题目列表(包括答案和解析)

已知函数f(t)对任意实数x,y都有f(x+y)=f(x)+f(y)+3xy(x+y+2)+k(x+y)+3,k为常数,且f(1)=1,f(2)=17.
(1)若t为正整数,求f(t)的解析式(已知公式:12+22+32+…+n2=
16
n(n+1)(2n+1)

(2)求满足f(t)=t的所有正整数t;
(3)若t为正整数,且t≥4时,f(t)≥mt2+(4m+1)+3m恒成立,求实数m的最大值.

查看答案和解析>>

已知函数f(t)对任意实数x,y都有f(x+y)=f(x)+f(y)+3xy(x+y+2)+k(x+y)+3,k为常数,且f(1)=1,f(2)=17.
(1)若t为正整数,求f(t)的解析式(已知公式:
(2)求满足f(t)=t的所有正整数t;
(3)若t为正整数,且t≥4时,f(t)≥mt2+(4m+1)+3m恒成立,求实数m的最大值.

查看答案和解析>>

已知函数f(t)对任意实数x,y都有f(x+y)=f(x)+f(y)+3xy(x+y+2)+k(x+y)+3,k为常数,且f(1)=1,f(2)=17.
(1)若t为正整数,求f(t)的解析式(已知公式:数学公式
(2)求满足f(t)=t的所有正整数t;
(3)若t为正整数,且t≥4时,f(t)≥mt2+(4m+1)+3m恒成立,求实数m的最大值.

查看答案和解析>>

已知函数f(t)对任意实数x,y都有f(x+y)=f(x)+f(y)+3xy(x+y+2)+k(x+y)+3,k为常数,且f(1)=1,f(2)=17.
(1)若t为正整数,求f(t)的解析式(已知公式:12+22+32+…+n2=
1
6
n(n+1)(2n+1)

(2)求满足f(t)=t的所有正整数t;
(3)若t为正整数,且t≥4时,f(t)≥mt2+(4m+1)+3m恒成立,求实数m的最大值.

查看答案和解析>>

已知函数y=f(x)是定义域为R的偶函数,且对x∈R,恒有f(1+x)=f(1-x).又当x∈[0,1]时,f(x)=x.
(1)当x∈[-1,0]时,求f(x)的解析式;
(2)求证:函数y=f(x)(x∈R)是以T=2为周期的周期函数;
(3)解答本小题考生只需从下列三个问题中选择一个写出结论即可(无需写解题步骤).注意:考生若选择多于一个问题解答,则按分数最低一个问题的解答正确与否给分.
①当x∈[2n-1,2n](n∈Z)时,求f(x)的解析式.
②当x∈[2n-1,2n+1](其中n是给定的正整数)时,若函数y=f(x)的图象与函数y=kx的图象有且仅有两个公共点,求实数k的取值范围.
③当x∈[0,2n](n是给定的正整数且n≥3)时,求f(x)的解析式.

查看答案和解析>>


同步练习册答案