设g(x)=px--2f=lnx. 在其定义域内为单调函数.求p的取值范围, ≤x, 查看更多

 

题目列表(包括答案和解析)

g(x)=px-
q
x
-2f(x)
,其中f(x)=lnx,且g(e)=qe-
p
e
-2
.(e为自然对数的底数)
(Ⅰ)求p与q的关系;
(Ⅱ)若g(x)在其定义域内为单调函数,求p的取值范围;
(Ⅲ)证明:
①f(x)≤x-1(x>-1);
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N,n≥2).

查看答案和解析>>

g(x)=px-
p
x
-2f(x)
,其中f(x)=lnx.
(Ⅰ)若g(x)在其定义域内为增函数,求实数p的取值范围;
(Ⅱ)证明:f(x)≤x-1;
(Ⅲ)证明:
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N*,n≥2)

查看答案和解析>>

g(x)=px-
q
x
-2f(x)
,其中f(x)=lnx,且g(e)=qe-
p
e
-2
.(e为自然对数的底数)
(Ⅰ)求p与q的关系;
(Ⅱ)若g(x)在其定义域内为单调函数,求p的取值范围.

查看答案和解析>>

g(x)=px-
p
x
-2f(x)
,其中f(x)=lnx.
(Ⅰ)若g(x)在其定义域内为增函数,求实数p的取值范围;
(Ⅱ)证明:f(x)≤x-1;
(Ⅲ)证明:
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N*,n≥2)

查看答案和解析>>

g(x)=px-
q
x
-2f(x)
,其中f(x)=lnx,且g(e)=qe-
p
e
-2
.(e为自然对数的底数)
(I)求p与q的关系;
(Ⅱ)若g(x)在其定义域内为单调函数,求p的取值范围;
(Ⅲ)证明:
①f(1+x)≤x(x>-1);
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N,n≥2).

查看答案和解析>>


同步练习册答案