题目列表(包括答案和解析)
已知数列
满足
,![]()
(1)求证:数列
是等比数列;
(2)求数列
的通项和前n项和
.
【解析】第一问中,利用
,得到
从而得证
第二问中,利用∴
∴
分组求和法得到结论。
解:(1)由题得
………4分
……………………5分
∴数列
是以2为公比,2为首项的等比数列;
……………………6分
(2)∴
……………………8分
∴
……………………9分
∴![]()
如图,
,
,…,
,…是曲线
上的点,
,
,…,
,…是
轴正半轴上的点,且
,
,…,
,…
均为斜边在
轴上的等腰直角三角形(
为坐标原点).
(1)写出
、
和
之间的等量关系,以及
、
和
之间的等量关系;
(2)求证:
(
);
(3)设
,对所有
,
恒成立,求实数
的取值范围.
![]()
【解析】第一问利用有
,
得到
第二问证明:①当
时,可求得
,命题成立;②假设当
时,命题成立,即有
则当
时,由归纳假设及
,
得![]()
第三问
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
![]()
解:(1)依题意,有
,
,………………4分
(2)证明:①当
时,可求得
,命题成立;
……………2分
②假设当
时,命题成立,即有
,……………………1分
则当
时,由归纳假设及
,
得
.
即![]()
解得
(
不合题意,舍去)
即当
时,命题成立. …………………………………………4分
综上所述,对所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
.……………2分
由题意,有![]()
.
所以,![]()
已知向量
=(
),
=(
).
(1)当
时,求
的值。
(2)已知
=
,
求
的值。
【解析】本试题主要考查了向量的数量积的运算,以及构造角求解三角函数值的运用。
第一问中,利用
![]()
第二问中,结合第一问中
=
然后
,构造角
得到结论。
解、(1)![]()
(2)
因为:![]()
=
所以:
因为:![]()
=![]()
选答题(本小题满分10分)(请考生在第22、23、24三道题中任选一题做答,并用2B铅笔在答题卡上把所选题目的题号涂黑。注意所做题号必须与所涂题目的题号一致,并在答题卡指定区域答题。如果多做,则按所做的第一题计分。)
22.选修4-1:几何证明选讲
如图,已知
是⊙
的切线,
为切点,
是⊙
的割线,与⊙
交于
两点,圆心
在
的内部,点
是
的中点。
(1)证明
四点共圆;
(2)求
的大小。
23.选修4—4:坐标系与参数方程[来源:ZXXK]
已知直线
经过点
,倾斜角
。
(1)写出直线
的参数方程;
(2)设
与曲线
相交于两点
,求点
到
两点的距离之积。
24.选修4—5:不等式证明选讲
若不等式
与不等式
同解,而
的解集为空集,求实数
的取值范围。
在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:
(1)选择题得满分(50分)的概率;
(2)选择题所得分数
的数学期望。
【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为
,有1道题答对的概率为
,还有1道答对的概率为
,
所以得分为50分的概率为: ![]()
第二问中,依题意,该考生得分的范围为{35,40,45,50}
得分为35分表示只做对了7道题,其余各题都做错,
所以概率为
得分为40分的概率为:
同理求得,得分为45分的概率为:
得分为50分的概率为:![]()
得到分布列和期望值。
解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为
,有1道题答对的概率为
,还有1道答对的概率为
,
所以得分为50分的概率为:
…………5分
(2)依题意,该考生得分的范围为{35,40,45,50} …………6分
得分为35分表示只做对了7道题,其余各题都做错,
所以概率为
…………7分
得分为40分的概率为:
…………8分
同理求得,得分为45分的概率为:
…………9分
得分为50分的概率为:
…………10分
所以得分
的分布列为
|
|
35 |
40 |
45 |
50 |
|
|
|
|
|
|
数学期望![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com