[解](1)如图建系.设椭圆方程为,则 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

某上市股票在30天内每股的交易价格(元)与时间(天)所组成的有序数对落在下图中的两条线段上,该股票在30天内的日交易量(万股)与时间(天)的部分数据如下表所示.

 

第t天

4

10

16

22

Q(万股)

36

30

24

18

 

 

 

⑴根据提供的图象,写出该种股票每股交易价格(元)与时间(天)所满足的函数关系式;

⑵根据表中数据确定日交易量(万股)与时间(天)的一次函数关系式;

⑶在(2)的结论下,用(万元)表示该股票日交易额,写出关于的函数关系式,并求这30天中第几天日交易额最大,最大值为多少?

【解析】(1)根据图象可知此函数为分段函数,在(0,20]和(20,30]两个区间利用待定系数法分别求出一次函数关系式联立可得P的解析式;

(2)因为Q与t成一次函数关系,根据表格中的数据,取出两组即可确定出Q的解析式;

(3)根据股票日交易额=交易量×每股较易价格可知y=PQ,可得y的解析式,分别在各段上利用二次函数求最值的方法求出即可.

 

查看答案和解析>>

(2013•浙江模拟)如图,已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别相交于M,N两点.如果QB的斜率与PB的斜率的乘积为-3,则∠MBN的大小等于(  )

查看答案和解析>>

精英家教网已知单位圆O上的两点A,B及单位圆所在平面上的一点P,满足
OP
=m
OA
+
OB
(m为常数).
(1)如图所示,若四边形OABP为平行四边形,求m的值;
(2)若m=2,求|
OP
|
的取值范围;
(3)若
OA
OB
=-
1
3
,线段AB与OP交于点D,试求当△OPB为直角三角形时
OD
OA
的值.

查看答案和解析>>

如图,已知抛物线的方程为x2=2px(p>0,为常数),过点M(0,m)且倾斜角为θ(0<θ<
π
2
)
的直线交抛物线于A(x1,y1),B(x2,y2)两点,且x1x2=-p2
(1)求m的值
(2)若点M分AB所成的比为λ=
1
2
,求直线AB的方程.

查看答案和解析>>


同步练习册答案