(Ⅱ)因为函数在区间上单调递增.所以导函数在区间上的值恒大于或等于零. 查看更多

 

题目列表(包括答案和解析)

设函数

(I)求的单调区间;

(II)当0<a<2时,求函数在区间上的最小值.

【解析】第一问定义域为真数大于零,得到.                            

,则,所以,得到结论。

第二问中, ().

.                          

因为0<a<2,所以.令 可得

对参数讨论的得到最值。

所以函数上为减函数,在上为增函数.

(I)定义域为.           ………………………1分

.                            

,则,所以.  ……………………3分          

因为定义域为,所以.                            

,则,所以

因为定义域为,所以.          ………………………5分

所以函数的单调递增区间为

单调递减区间为.                         ………………………7分

(II) ().

.                          

因为0<a<2,所以.令 可得.…………9分

所以函数上为减函数,在上为增函数.

①当,即时,            

在区间上,上为减函数,在上为增函数.

所以.         ………………………10分  

②当,即时,在区间上为减函数.

所以.               

综上所述,当时,

时,

 

查看答案和解析>>

设函数

(Ⅰ) 当时,求的单调区间;

(Ⅱ) 若上的最大值为,求的值.

【解析】第一问中利用函数的定义域为(0,2),.

当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);

第二问中,利用当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

解:函数的定义域为(0,2),.

(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);

(2)当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

 

查看答案和解析>>

设函数,其中为自然对数的底数.

(1)求函数的单调区间;

(2)记曲线在点(其中)处的切线为轴、轴所围成的三角形面积为,求的最大值.

【解析】第一问利用由已知,所以

,得, 所以,在区间上,,函数在区间上单调递减; 在区间上,,函数在区间上单调递增;

第二问中,因为,所以曲线在点处切线为.

切线轴的交点为,与轴的交点为

因为,所以,  

, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时

解:(Ⅰ)由已知,所以, 由,得,  所以,在区间上,,函数在区间上单调递减; 

在区间上,,函数在区间上单调递增;  

即函数的单调递减区间为,单调递增区间为.

(Ⅱ)因为,所以曲线在点处切线为.

切线轴的交点为,与轴的交点为

因为,所以,  

, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时

所以,的最大值为

 

查看答案和解析>>

已知函数,(),

(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求a,b的值

(2)当时,若函数的单调区间,并求其在区间(-∞,-1)上的最大值。

【解析】(1) 

∵曲线与曲线在它们的交点(1,c)处具有公共切线

(2)令,当时,

,得

时,的情况如下:

x

+

0

-

0

+

 

 

所以函数的单调递增区间为,单调递减区间为

,即时,函数在区间上单调递增,在区间上的最大值为

,即时,函数在区间内单调递增,在区间上单调递减,在区间上的最大值为

,即a>6时,函数在区间内单调递赠,在区间内单调递减,在区间上单调递增。又因为

所以在区间上的最大值为

 

查看答案和解析>>

如图,,…,,…是曲线上的点,,…,,…是轴正半轴上的点,且,…,,… 均为斜边在轴上的等腰直角三角形(为坐标原点).

(1)写出之间的等量关系,以及之间的等量关系;

(2)求证:);

(3)设,对所有恒成立,求实数的取值范围.

【解析】第一问利用有得到

第二问证明:①当时,可求得,命题成立;②假设当时,命题成立,即有则当时,由归纳假设及

第三问 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

解:(1)依题意,有,………………4分

(2)证明:①当时,可求得,命题成立; ……………2分

②假设当时,命题成立,即有,……………………1分

则当时,由归纳假设及

解得不合题意,舍去)

即当时,命题成立.  …………………………………………4分

综上所述,对所有.    ……………………………1分

(3) 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

.……………2分

由题意,有. 所以,

 

查看答案和解析>>


同步练习册答案