求直线的方程. 23已知: 查看更多

 

题目列表(包括答案和解析)

四、选考题:(本小题满分10分)

请考生在第2223、题中任选一题做答,如果多做,则按所做的第一题记分.

22.选修4-4:坐标系与参数方程

已知圆O1和圆O2的极坐标方程分别为

(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;

(2)求经过两圆交点的直线的极坐标方程。

 

查看答案和解析>>

四、选考题:(本小题满分10分)
请考生在第22、23、题中任选一题做答,如果多做,则按所做的第一题记分.
22.选修4-4:坐标系与参数方程
已知圆O1和圆O2的极坐标方程分别为
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程。

查看答案和解析>>


选作题,请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分,每道题满分10分)
22、选修4—1:几何证明选讲
如图,△ABC的角平分线AD的延长线交于的外按圆于点E。
(I)证明:△ABC∽△ADC
(II)若△ABC的面积为AD·AE,求∠BAC的大小。

23、选修4—4:坐标系与参数方程
已知半圆C的参数方程为参数且(0≤
P为半圆C上一点,A(1,0)O为坐标原点,点M在射线OP上,线段OM与  的长度均为
(I)求以O为极点,轴为正半轴为极轴建立极坐标系求点M的极坐标。
(II)求直线AM的参数方程。
24、选修4—5,不等式选讲
已知函数  
(I)若不等式的解集为求a值。
(II)在(I) 条件下,若对一切实数恒成立,求实数m的取值范围。

查看答案和解析>>


选作题,请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分,每道题满分10分)
22、选修4—1:几何证明选讲
如图,△ABC的角平分线AD的延长线交于的外按圆于点E。
(I)证明:△ABC∽△ADC
(II)若△ABC的面积为AD·AE,求∠BAC的大小。

23、选修4—4:坐标系与参数方程
已知半圆C的参数方程为参数且(0≤
P为半圆C上一点,A(1,0)O为坐标原点,点M在射线OP上,线段OM与  的长度均为
(I)求以O为极点,轴为正半轴为极轴建立极坐标系求点M的极坐标。
(II)求直线AM的参数方程。
24、选修4—5,不等式选讲
已知函数  
(I)若不等式的解集为求a值。
(II)在(I) 条件下,若对一切实数恒成立,求实数m的取值范围。

查看答案和解析>>

 [选做题]本题包括A、B、C、D四小题,请选定其中两题并在相应的答题区域内作答。若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤。

A. 选修4-1:几何证明选讲

 

AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。

B. 选修4-2:矩阵与变换

 

在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值。

C. 选修4-4:坐标系与参数方程

 

在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值。

 

D. 选修4-5:不等式选讲

 

设a、b是非负实数,求证:

 

[必做题]第22题、第23题,每题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。

 

 

查看答案和解析>>

一、填空

1、;2、;3、;4、;5、;6、5;7、;8、;9、

10、;11、;12、;13、;14、

二、解答题

   1`5、(本题满分14分)

解:(1)(设“该队员只属于一支球队的”为事件A,则事件A的概率

         

(2)设“该队员最多属于两支球队的”为事件B,则事件B的概率为

答:(略)

16、(本题满分14分)

解:(1)连,四边形菱形  

  的中点,

              

                   

(2)当时,使得,连,交,则 的中点,又上中线,为正三角形的中心,令菱形的边长为,则

           

       

   即:  

17、解:

(1)

          

       

        在区间上的值域为

     (2)   

                 

          

      

      

       

       

18、解:(1)依题意,得:

          抛物线标准方程为:

      (2)设圆心的坐标为,半径为

        圆心轴上截得的弦长为

         

        圆心的方程为:

      从而变为:      ①

对于任意的,方程①均成立。

故有:     解得:

      所以,圆过定点(2,0)。

19、解(1)当时,

         令  得 所以切点为(1,2),切线的斜率为1,

      所以曲线处的切线方程为:

   (2)①当时,

      恒成立。 上增函数。

故当时,

②  当时,

(i)当时,时为正数,所以在区间上为增函数。故当时,,且此时

(ii)当,即时,时为负数,在间 时为正数。所以在区间上为减函数,在上为增函数

故当时,,且此时

(iii)当;即 时,时为负数,所以在区间[1,e]上为减函数,故当时,

综上所述,当时,时和时的最小值都是

所以此时的最小值为;当时,时的最小值为

,而

所以此时的最小值为

时,在时最小值为,在时的最小值为

,所以此时的最小值为

所以函数的最小值为

20、解:(1)设数列的公差为,则

     依题得:,对恒成立。

即:,对恒成立。

所以,即:

,故的值为2。

(2)

   

  所以,

①     当为奇数,且时,

  相乘得所以 也符合。

②     当为偶数,且时,

相乘得所以

,所以 。因此 ,当时也符合。

所以数列的通项公式为

为偶数时,

  

为奇数时,为偶数,

 

 

所以 

 

 

 

 

 

 

 

 

 

 

南京市2009届高三第一次调研试

数学附加题参考答案

 

21、选做题

     .选修:几何证明选讲

 证明:因为切⊙O于点,所以

       因为,所以

  又A、B、C、D四点共圆,所以 所以

 又,所以

所以   即

所以    即:

B.选修4-2:矩阵与变换

解:由题设得,设是直线上任意一点,

在矩阵对应的变换作用下变为,

则有, 即 ,所以

因为点在直线上,从而,即:

所以曲线的方程为 

C.选修4-4;坐标系与参数方程

解: 直线的参数方程为 为参数)故直线的普通方程为

   因为为椭圆上任意点,故可设其中

  因此点到直线的距离是

所以当时,取得最大值

D.选修4-5:不等式选讲

证明:,所以 

      

必做题:第22题、第23题每题10分,共20分。

22、解:(1)设圆的半径为

         因为圆与圆,所以

         所以,即:

        所以点的轨迹是以为焦点的椭圆且设椭圆方程为其中 ,所以

      所以曲线的方程

    (2)因为直线过椭圆的中心,由椭圆的对称性可知,

        因为,所以

       不妨设点轴上方,则

所以,即:点的坐标为

所以直线的斜率为,故所求直线方和程为

23、(1)当

同步练习册答案