题目列表(包括答案和解析)
已知
,
是椭圆![]()
左右焦点,它的离心率
,且被直线
所截得的线段的中点的横坐标为![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设
是其椭圆上的任意一点,当
为钝角时,求
的取值范围。
【解析】解:因为第一问中,利用椭圆的性质由
得
所以椭圆方程可设为:
,然后利用
得
得
椭圆方程为![]()
第二问中,当
为钝角时,
,
得![]()
所以
得![]()
解:(Ⅰ)由
得
所以椭圆方程可设为:![]()
3分
得
得
椭圆方程为
3分
(Ⅱ)当
为钝角时,
,
得
3分
所以
得![]()
设椭圆
:
(
)的一个顶点为
,
,
分别是椭圆的左、右焦点,离心率
,过椭圆右焦点
的直线
与椭圆
交于
,
两点.
(1)求椭圆
的方程;
(2)是否存在直线
,使得
,若存在,求出直线
的方程;若不存在,说明理由;
【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为
,即
又因为
,得到
,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合
得到结论。
解:(1)椭圆的顶点为
,即![]()
,解得
,
椭圆的标准方程为
--------4分
(2)由题可知,直线
与椭圆必相交.
①当直线斜率不存在时,经检验不合题意. --------5分
②当直线斜率存在时,设存在直线
为
,且
,
.
由
得
, ----------7分
,
,
![]()
=
所以
,
----------10分
故直线
的方程为
或
即
或![]()
| 1 |
| x |
| 2 |
| y |
| xy |
| 1 | ||
|
| 1 |
| x |
| 2 |
| y |
|
| 1 |
| x |
| 2 |
| y |
| 2 |
| 2 |
(1)焦点F1的坐标为(3,0);
(2)长半轴长为5.
则可求得此椭圆方程为
=1(※)
问可用其他什么条件代替条件(2),使所求得的椭圆方程仍为(※)?请写出两种替代条件,并说明理由.
(1)焦点F1的坐标为(3,0);
(2)长半轴长为5.
则可求得此椭圆方程为
(※),问可用其他什么条件代替条件(2),使所求得的椭圆方程仍为(※)?请写出两种替代条件,并说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com