(Ⅲ)求下表中前行所有数的和. 查看更多

 

题目列表(包括答案和解析)

有一批货物需要用汽车从城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.
据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如表:
所用的时间(天数)10111213
通过公路1的频数20402020
通过公路2的频数10404010
(I)为进行某项研究,从所用时间为12天的60辆汽车中随机抽取6辆.
(i)若用分层抽样的方法抽取,求从通过公路1和公路2的汽车中各抽取几辆;
(ii)若从(i)的条件下抽取的6辆汽车中,再任意抽取两辆汽车,求这两辆汽车至少有一辆通过公路1的概率.
(II)假设汽车4只能在约定日期(某月某日)的前11天出发,汽车1只能在约定日期的前12天出发.为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车4和汽车1应如何选择各自的路径.

查看答案和解析>>

将数列{an}中的所有项按每一行比上一行多一项的规则排成如下表:
记表中的第一列数a1,a2,a4,a7,…,构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足数学公式
(1)求证数列数学公式成等差数列,并求数列{bn}的通项公式;
(2)上表中,若a81项所在行的数按从左到右的顺序构成等比数列,且公比q为正数,求当数学公式时,公比q的值.

查看答案和解析>>

将数列{an}中的所有项按每一行比上一行多一项的规则排成如下表:
记表中的第一列数a1,a2,a4,a7,…,构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足
(1)求证数列成等差数列,并求数列{bn}的通项公式;
(2)上表中,若a81项所在行的数按从左到右的顺序构成等比数列,且公比q为正数,求当时,公比q的值.

查看答案和解析>>

将数列{an}中的所有项按每一行比上一行多一项的规则排成如下表:
记表中的第一列数a1,a2,a4,a7,…,构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足
(1)求证数列成等差数列,并求数列{bn}的通项公式;
(2)上表中,若a81项所在行的数按从左到右的顺序构成等比数列,且公比q为正数,求当时,公比q的值.

查看答案和解析>>

某城市自西向东和自南向北的两条主干道的东南方位有一块空地,市规划部门计划利用它建设一个供市民休闲健身的小型绿化广场,如下图所示是步行小道设计方案示意图,其中,Ox,Oy分别表示自西向东,自南向北的两条主干道.设计方案是自主干道交汇点O处修一条步行小道,小道为抛物线y=x2的一段,在小道上依次以点P1(x1y1),P2(x2y2),…,Pn(xnyn)(n≥10,n∈N*)为圆心,修一系列圆型小道,这些圆型小道与主干道Ox相切,且任意相邻的两圆彼此外切,若x1=1(单位:百米)且xn+1<xn
(1)记以Pn为圆心的圆与主干道Ox切于An点,证明:数列{
1
xn
}
是等差数列,并求|OAn|关于n的表达式;
(2)记⊙Pn的面积为Sn,根据以往施工经验可知,面积为S的圆型小道的施工工时为
πS
(单位:周).试问5周时间内能否完成前n个圆型小道的修建?请说明你的理由.

查看答案和解析>>


同步练习册答案