又依题有.∴.∴抛物线方程为,--------------6分 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)设b>0,椭圆方程为,抛物线方程为。如图所示,过点F(0,b + 2)作x轴的平行线,与抛物线在第一象限的交点为G。已知抛物线在点G的切线经过椭圆的右焦点F1

(1)求满足条件的椭圆方程和抛物线方程;

(2)点G、所在的直线截椭圆的右下区域为D,

若圆C:与区域D有公共点,求m的最小值。

查看答案和解析>>

如图,已知直线)与抛物线和圆都相切,的焦点.

(Ⅰ)求的值;

(Ⅱ)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,    直线轴交点为,连接交抛物线两点,求△的面积的取值范围.

【解析】第一问中利用圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以

第二问中,由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形

因为是定点,所以点在定直线

第三问中,设直线,代入结合韦达定理得到。

解:(Ⅰ)由已知,圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去).     …………………(2分)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形,

因为是定点,所以点在定直线上.…(2分)

(Ⅲ)设直线,代入,  ……)得,                 ……………………………     (2分)

的面积范围是

 

查看答案和解析>>

已知抛物线方程为y2=2px(p>0).
(1)若点(2,2
2
)
在抛物线上,求抛物线的焦点F的坐标和准线l的方程;
(2)在(1)的条件下,若过焦点F且倾斜角为60°的直线m交抛物线于A、B两点,点M在抛物线的准线l上,直线MA、MF、MB的斜率分别记为kMA、kMF、kMB,求证:kMA、kMF、kMB成等差数列;
(3)对(2)中的结论加以推广,使得(2)中的结论成为推广后命题的特例,请写出推广命题,并给予证明.
说明:第(3)题将根据结论的一般性程度给予不同的评分.

查看答案和解析>>

已知抛物线方程为y2=4x,直线l的方程为x-
3
y+5=0
,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,则d1+d2的最小值
2
2

查看答案和解析>>

12、已知抛物线方程为y2=2px(p>0),过该抛物线焦点F且不与x轴垂直的直线AB交抛物线于A,B两点,过点A,点B分别作AM,BN垂直于抛物线的准线,分别交准线于M,N两点,那么∠MFN必是(  )

查看答案和解析>>


同步练习册答案